Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 302(Pt B): 114099, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34801867

ABSTRACT

Efficient forest operations are required for the provision of biodiversity and numerous ecosystem services, such as wood production, carbon sequestration, protection against natural hazards and recreation. In numerous countries, under difficult terrain conditions, the costs of forest management and harvesting are not covered by timber revenue. One possible option to increase the cost-effectiveness of the forestry sector is the application of state-of-the-art harvesting and extraction techniques, so-called best suitable harvesting methods. We present a case study from Switzerland, where a lack of competitiveness in the forestry sector is of particular interest, with the aim of quantifying the efficiency gains if estimated best suitable harvesting methods were to be rigorously applied instead of the currently applied harvesting methods. For this purpose, we developed a spatial decision support system to allocate estimated best suitable harvesting methods to plots, while concurrently considering hauling route limitations, extraction route properties and stand characteristics. Our approach was based on productivity models and supported with expert-defined decision trees. The evaluation of the estimated best suitable harvesting methods and the comparison with the currently applied harvesting methods were completed for all 6500 National Forest Inventory (NFI) plots in Switzerland. We draw the following three major conclusions from our study: First, our modeling approach is an effective method to allocate estimated best suitable harvesting methods to NFI plots. Second, applying estimated best suitable harvesting methods would lead to cost reductions, in particular in the regions that include steep terrain and where harvesting mainly relies on cable- and air based extraction methods. Third, assuming an average timber price of 75 CHF m -3, 64 % instead of 52 % of the forest area could be harvested economically over the whole country if estimated best suitable methods were applied. This advantage would mainly be caused by a shift towards more mechanized harvesting methods. Improving the cost-effectiveness of the forestry sector is of high global relevance, as the increased use of domestic timber resources is a cost-efficient way to reduce atmospheric carbon emissions. The methodological framework described here was developed for Switzerland in particular, but it could be applied to Central Europe and other parts of Europe with a large amount of mountain forests.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forestry , Forests
2.
PLoS One ; 15(12): e0244289, 2020.
Article in English | MEDLINE | ID: mdl-33382710

ABSTRACT

In the field of forestry, one of the most economically important ecosystem service is the provision of timber. The need to calculate the economic effects of forest management in the short, medium, and long term is increasing. Forest operations or timber harvesting, which comprises felling, processing, and transport of trees or timber, are responsible for a large part of the costs and environmental impacts associated to forest management or enterprises. From a decision maker's perspective, it is essential to estimate working productivity and production costs under given operating conditions before any operation is conducted. This work addresses the lack of a valid collection of models that allows estimating time, productivities, and costs of labor and machinery for the most important forest operations in forest stands under Central European conditions. To create such models, we used data from forest enterprises, manual time studies, and the literature. This work presents a decision support tool that estimates the wood harvesting productivities of 12 different kinds of forest operations under Central European conditions. It includes forest operations using chainsaws, harvesters, skidders, forwarders, chippers, cable and tower yarders, and helicopters. In addition, the tool covers three models for wood volume estimation. The tool is written in Java and available open-source under the Apache License. This work shows how the tool can be used by describing its graphical user interface (GUI) and its application programming interface (API) that facilitates bulk processing of scientific data. Carefully selected default values allow estimations without knowing all input variables in detail. Each model is accompanied by an in-depth documentation where the forest operation, input variables, formulas, and statistical background are given. We conclude that HeProMo is a very useful tool for applications in forest practice, research, and teaching.


Subject(s)
Conservation of Natural Resources/methods , Forecasting/methods , Forestry/methods , Decision Support Techniques , Ecosystem , Efficiency , Forestry/economics , Forests , Models, Theoretical , Trees , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...