Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
Heliyon ; 10(15): e34321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144947

ABSTRACT

Ultraviolet B (UVB) light exposure accelerates skin photoaging. Human adipose-derived stem cell exosomes (hADSC-Exos) and some antioxidants may have anti-photoaging effects. However, it is unknown whether the combination of hADSC-Exos and antioxidants plays a synergistic role in anti-photoaging. In cellular and 3D skin models, we showed that vitamin E (VE) and hADSC-Exos were optimal anti-photoaging combinations. In vivo, VE and hADSC-Exos increased skin tightening and elasticity in UVB-induced photoaging mice Combined treatment with VE and hADSC-Exos inhibited SIRT1/NF-κB pathway. These findings contribute to the understanding of hADSC-Exos in conjunction with other antioxidants, thereby providing valuable insights for the future pharmaceutical and cosmetic industries.

3.
Med Image Anal ; 98: 103306, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39163786

ABSTRACT

Positron emission tomography (PET) imaging is widely used in medical imaging for analyzing neurological disorders and related brain diseases. Usually, full-dose imaging for PET ensures image quality but raises concerns about potential health risks of radiation exposure. The contradiction between reducing radiation exposure and maintaining diagnostic performance can be effectively addressed by reconstructing low-dose PET (L-PET) images to the same high-quality as full-dose (F-PET). This paper introduces the Multi Pareto Generative Adversarial Network (MPGAN) to achieve 3D end-to-end denoising for the L-PET images of human brain. MPGAN consists of two key modules: the diffused multi-round cascade generator (GDmc) and the dynamic Pareto-efficient discriminator (DPed), both of which play a zero-sum game for n(n∈1,2,3) rounds to ensure the quality of synthesized F-PET images. The Pareto-efficient dynamic discrimination process is introduced in DPed to adaptively adjust the weights of sub-discriminators for improved discrimination output. We validated the performance of MPGAN using three datasets, including two independent datasets and one mixed dataset, and compared it with 12 recent competing models. Experimental results indicate that the proposed MPGAN provides an effective solution for 3D end-to-end denoising of L-PET images of the human brain, which meets clinical standards and achieves state-of-the-art performance on commonly used metrics.

5.
Adv Sci (Weinh) ; : e2405848, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119886

ABSTRACT

Dual-mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6-Ru/Pt NPs is constructed for dual-mode platforms by integrating double-layered ECL luminophores and the nanozyme using Zr-MOF (UiO-66-NH2) as the carrier, which not only generates enhanced ECL and colorimetric signals but also provide greater stability than that of commonly used nanotags. Dual-mode platforms are used within 15 min from the "sample in" to the "result out" steps, without nucleic acid amplification. The colorimetric mode allows the screening of MPXV with the visual limit of detection (vLOD) of 0.1 pM (6 × 108 copies µL-1) and the ECL mode supports quantitative detection of MPXV with an LOD as low as 10 aM (6 copies·µL-1), resulting in a broad sensing range of 60 to 3 × 1011 copies·µL-1 (10 orders of magnitude). Validation is conducted using 50 clinical samples, which is 100% concordant to those of quantitative polymerase chain reaction (qPCR), indicating that Ru@U6-Ru/Pt NPs-based dual-mode sensing platforms showed great promise as rapid, sensitive, and accurate tools for diagnosis of the nucleic acid of MPXV and other infectious pathogens.

6.
J Laparoendosc Adv Surg Tech A ; 34(8): 682-690, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39110618

ABSTRACT

Background: Celiac axis stenosis can potentially lead to insufficient blood supply to vital organs, such as the liver, spleen, pancreas, and stomach. This condition result in the development of collateral circulation between the superior mesenteric artery and the hepatic artery. However, these collateral circulations are often disrupted during pancreaticoduodenectomy (PD), which may increase the risk of postoperative complications. Methods: A retrospective analysis was conducted on patients who underwent laparoscopic pancreaticoduodenectomy (LPD) from April 2015 to April 2023. Celiac trunk stenosis is classified according to the degree of stenosis: no stenosis (<30%), grade A (30%-<50%), grade B (50%-≤80%), and grade C (>80%). The incidence of postoperative complications was evaluated, and both univariate and multivariate risk analyses were conducted. Results: A total of 997 patients were included in the study, with mild celiac axis stenosis present in 23 (2.3%) patients, moderate stenosis in 18 (1.8%) patients, and severe stenosis in 10 (1.0%) patients. Independent risk factors for the development of bile leakage, as identified by both univariate and multivariate analyses, included body mass index (BMI) (HR = 1.108, 95% CI = 1.008-1.218, P = .033), intra-abdominal infection (HR = 2.607, 95% CI = 1.308-5.196, P = .006), postoperative hemorrhage (HR = 4.510, 95% CI = 2.048-9.930, P = <0.001), and celiac axis stenosis (50%-≤80%, HR = 4.235, 95% CI = 1.153-15.558, P = .030), and (>80%, HR = 4.728, 95% CI = .882-25.341, P = .047). Celiac axis stenosis, however, was not determined to be an independent risk factor for pancreatic fistula (P > 0.05). Additionally, the presence of an aberrant hepatic artery did not significantly increase the risk of postoperative complications when compared with celiac axis stenosis alone. Conclusion: Severe celiac axis stenosis is an independent risk factor for postoperative bile leakage following LPD.


Subject(s)
Celiac Artery , Laparoscopy , Pancreaticoduodenectomy , Postoperative Complications , Humans , Retrospective Studies , Pancreaticoduodenectomy/adverse effects , Male , Female , Middle Aged , Risk Factors , Laparoscopy/adverse effects , Aged , Constriction, Pathologic/etiology , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Adult , Anastomotic Leak/etiology , Anastomotic Leak/epidemiology , Bile
7.
ACS Nano ; 18(33): 22548-22559, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110641

ABSTRACT

Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.

8.
Front Endocrinol (Lausanne) ; 15: 1217250, 2024.
Article in English | MEDLINE | ID: mdl-39104815

ABSTRACT

Background: Gallbladder mixed neuroendocrine-non-neuroendocrine neoplasm generally consists of a gallbladder neuroendocrine tumor and a non-neuroendocrine component. The World Health Organization (WHO) in 2019 established a guideline requiring each component, both neuroendocrine and non-neuroendocrine, to account for a minimum of 30% of the tumor mass. Methods: Patients after surgery resection and diagnosed at microscopy evaluation with pure gallbladder neuroendocrine carcinoma (GBNEC), gallbladder mixed adeno-neuroendocrine carcinoma (GBMANEC, GBNEC≥30%), and gallbladder carcinoma mixed with a small fraction of GBNEC (GBNEC <30%) between 2010 and 2022 at West China Hospital of Sichuan University were collated for the analyses. Demographic features, surgical variables, and tumor characteristics were evaluated for association with patients' overall and recurrence-free survival (OS and RFS). Results: The study included 26 GBNEC, 11 GBMANEC, 4 gallbladder squamous-cell carcinoma (GBSCC), and 7 gallbladder adenocarcinoma (GBADC) mixed with a small fraction of GBNEC. All patients had stage III or higher tumors (AJCC8th edition). The majority of included patients (79.17%) underwent curative surgical resection (R0), with only ten patients having tumoral resection margins. In the analysis comparing patients with GBNEC percentage (GBNEC≥30% vs. GBNEC<30%), the basic demographics and tumor characteristics of most patients were comparable. The prognosis of these patients was also comparable, with a median OS of 23.65 months versus 20.40 months (P=0.13) and a median RFS of 17.1 months versus 12.3 months (P=0.24). However, patients with GBADC or GBSCC mixed with GBNEC <30% had a statistically significant decreased OS and RFS (both P<0.0001)) compared with GBNEC and GBMANEC. Patients with GBNEC who exhibited advanced tumor stages and lymphovascular invasion had a higher risk of experiencing worse overall survival (OS) and recurrence-free survival (RFS). However, a 30% GBNEC component was not identified as an independent risk factor. Conclusion: Patients with GBNEC were frequently diagnosed at advanced stages and their prognosis is poor. The 30% percentage of the GBNEC component is not related to the patient's survival.


Subject(s)
Carcinoma, Neuroendocrine , Gallbladder Neoplasms , Humans , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/mortality , Gallbladder Neoplasms/surgery , Female , Male , Middle Aged , Prognosis , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/surgery , Carcinoma, Neuroendocrine/diagnosis , Aged , Adult , Retrospective Studies , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Adenocarcinoma/surgery , Survival Rate
9.
Sci China Life Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39115728

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1ß, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.

10.
J Inherit Metab Dis ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143820

ABSTRACT

Long-term outcomes in classic galactosemia (CG) have been studied previously, but all prior studies have relied on cohorts of patients that were small in number, or heavily skewed toward children and young adults, or both. Here, we extend what is known about the health and well-being of maturing adults with CG by analyzing the results of anonymous custom surveys completed by 92 affected individuals, ages 30-78, and 38 unaffected sibling controls, ages 30-79. The median age for patients was 38.5 years and for controls was 41 years. These study participants hailed from 12 different countries predominantly representing Europe and North America. Participants reported on their general life experiences and outcomes in seven different domains including: speech/voice/language, cognition, motor function, cataracts, bone health, psychosocial well-being, and gastrointestinal health. We also queried women about ovarian function. Our results indicated a prevalence of long-term complications across all outcome domains that aligned with levels previously reported in younger cohorts. Given the sample size and age range of participants in this study, these findings strongly suggest that the adverse developmental outcomes commonly linked to CG are not progressive with age for most patients. We also tested four candidate modifiers for possible association with each of the outcomes followed, including: days of neonatal milk exposure, rigor of dietary galactose restriction in early childhood, current age, and home continent. We observed no associations that reached even nominal significance, except for the following: cataracts with neonatal milk exposure (p = 2.347e-04), cataracts with age (p = 0.018), and bone health with home continent (p = 0.03).

11.
Zhongguo Zhen Jiu ; 44(8): 865-70, 2024 Aug 12.
Article in Chinese | MEDLINE | ID: mdl-39111782

ABSTRACT

The Jingjin therapy and rehabilitation medicine share commonalities and complement each other. The application of Jingjin therapy from a rehabilitation perspective can broaden the development path of traditional Chinese medicine (TCM) rehabilitation. This paper, based on relevant literature and research findings, elaborates on the connection between Jingjin syndrome differentiation acupuncture and rehabilitation assessment and treatment. It discusses the application framework of Jingjin's preventive treatment theory in disease prevention and rehabilitation, and forecasts the research model of Jingjin rehabilitation medicine from an integrative perspective of Chinese and western medicine. This study aims to improve the rehabilitation application thinking of Jingjin therapy and enrich the application methods and treatment approaches of TCM rehabilitation medicine.


Subject(s)
Acupuncture Therapy , Medicine, Chinese Traditional , Humans , Rehabilitation/methods
12.
Nat Metab ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112721
15.
Meat Sci ; 217: 109616, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39089087

ABSTRACT

Fat greatly impacts the overall texture and flavor of pork belly. Twice-cooked pork bellies (TPB), typically boiled and sliced before "back to pot" being stir-fried, is a classic Sichuan cuisine among stir-fried dishes. In this study, the effects of substituting conventional pan-frying (PCV) with superheated steam (SHS) technology on the sensory, texture, microstructure and flavor of the fat layers were investigated. SHS was used as an alternative to boiling (120 °C for 15, 20, 25, and 30 min), and "back to pot" stir-frying was also by SHS. TPB precooked for 25 min (P25) with SHS performed better quality characteristics than PCV, with less collagen fiber disruption and lipid droplet area, resulting in a lower hardness and higher shear force. Besides, the low-oxygen environment of SHS retarded the lipid peroxidation, showing a significantly lower MDA content than PCV. Differently, PCV exhibited more grassy and fatty flavors, while P25 exhibited a unique aroma of fruity and creamy due to its higher UFA/SFA ratios in the pre-cooking stage. Overall, the sensory scores of P25 were comparable to those of PCV (with no significant difference), revealing that SHS is expected to be applied to the industrial production of stir-fried dishes.

16.
Int J Biol Macromol ; : 134341, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089554

ABSTRACT

The Mg-ion battery faces significant limitations due to its liquid electrolyte, which suffers from inherent issues such as leakage and the growth of Mg dendrites. In contrast, gel polymer electrolytes (GPEs) offer heightened safety, a wide voltage window, and excellent flexibility, making them a promising alternative with outstanding electrochemical performance. In this study, a cyano-modified cellulose (CEC) GPE was engineered to aim at enhancing ion transportation and promoting uniform ion-flux through interactions between N and Mg2+ ions. The resulting CEC-based GPE demonstrated a high ionic conductivity of 1.73 mS cm-1 at room temperature. Furthermore, it exhibited remarkable Mg plating/stripping performance (coulombic efficiency ~96.7 %) and compatibility with electrodes. Importantly, when employed in a Mo6S8//Mg battery configuration, the CEC GPE displayed exceptional cycle stability, with virtually no degradation observed even after 650 cycles at 1C, thereby significantly advancing Mg-ion battery technology due to its excellent electrochemical properties. This study provides valuable insights into the molecular engineering of cellulose-based GPEs.

17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 447-456, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970519

ABSTRACT

Ischemic stroke (IS) is a severe cerebrovascular disease that seriously endangers human health. Gut microbiota plays a key role as an intermediate mediator in bidirectional regulation between the brain and the intestine. In recent years, trimethylamine N-oxide (TMAO) as a gut microbiota metabolite has received widespread attention in cardiovascular diseases. Elevated levels of TMAO may increase the risk of IS by affecting IS risk factors such as atherosclerosis, atrial fibrillation, hypertension, and type 2 diabetes. TMAO exacerbates neurological damage in IS patients, increases the risk of IS recurrence, and is an independent predictor of post-stroke cognitive impairment (PSCI) in patients. Current research suggests that the mechanisms of TMAO action include endothelial dysfunction, promoting of foam cell formation, influence on cholesterol metabolism, and enhancement of platelet reactivity. Lowering plasma TMAO levels through the rational use of traditional Chinese medicine, dietary management, vitamins, and probiotics can prevent and treat IS.


Subject(s)
Gastrointestinal Microbiome , Ischemic Stroke , Methylamines , Methylamines/metabolism , Methylamines/blood , Humans , Gastrointestinal Microbiome/physiology , Ischemic Stroke/metabolism , Risk Factors
18.
Front Immunol ; 15: 1428920, 2024.
Article in English | MEDLINE | ID: mdl-39015566

ABSTRACT

Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.


Subject(s)
Drug Resistance, Neoplasm , Ferroptosis , Mitochondria , Neoplasms , Reactive Oxygen Species , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Mitochondria/metabolism , Animals , Neoplasm Metastasis
19.
Food Chem ; 459: 140397, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018622

ABSTRACT

Food proteins represent a vital source of self-assembling peptides, with hydrogels constructed through peptide self-assembly exhibiting widespread utility in the food sector. This review aims to provide a recent research progress in preparation and characterization of hydrogels from food-derived peptides. Also, the self-assembly mechanisms and the impact of factors are discussed. Presently, food-derived self-assembling peptide-based hydrogels can be synthesized using either physical or chemical methodologies and evaluated through methodologies such as microscopic, spectroscopic, and rheological assessment. The self-assembly of food-derived peptides is hierarchically formed by non-covalent interactions, including hydrogen bond and hydrophobic interactions, where variables such as temperature and pH intricately modulate the assembly mechanism. The association between peptide sequence and hydrogel structure in the self-assembly mechanism is also discussed, which remains to be further explored. The present review contributes to application of food-derived peptide-based hydrogels in the fields of food, nutrition and material sciences.

20.
Sci Rep ; 14(1): 16421, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014041

ABSTRACT

Due to the large computational overhead, underutilization of features, and high bandwidth consumption in traditional SDN environments for DDoS attack detection and mitigation methods, this paper proposes a two-stage detection and mitigation method for DDoS attacks in SDN based on multi-dimensional characteristics. Firstly, an analysis of the traffic statistics from the SDN switch ports is performed, which aids in conducting a coarse-grained detection of DDoS attacks within the network. Subsequently, a Multi-Dimensional Deep Convolutional Classifier (MDDCC) is constructed using wavelet decomposition and convolutional neural networks to extract multi-dimensional characteristics from the traffic data passing through suspicious switches. Based on these extracted multi-dimensional characteristics, a simple classifier can be employed to accurately detect attack samples. Finally, by integrating graph theory with restrictive strategies, the source of attacks in SDN networks can be effectively traced and isolated. The experimental results indicate that the proposed method, which utilizes a minimal amount of statistical information, can quickly and accurately detect attacks within the SDN network. It demonstrates superior accuracy and generalization capabilities compared to traditional detection methods, especially when tested on both simulated and public datasets. Furthermore, by isolating the affected nodes, the method effectively mitigates the impact of the attacks, ensuring the normal transmission of legitimate traffic during network attacks. This approach not only enhances the detection capabilities but also provides a robust mechanism for containing the spread of cyber threats, thereby safeguarding the integrity and performance of the network.

SELECTION OF CITATIONS
SEARCH DETAIL