Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786026

ABSTRACT

Infertility is considered a global health issue as it currently affects one in every six couples, with female factors reckoned to contribute to partly or solely 50% of all infertility cases. Over a thousand genes are predicted to be highly expressed in the female reproductive system and around 150 genes in the ovary. However, some of their functions in fertility remain to be elucidated. In this study, 13 ovary and/or oocyte-enriched genes (Ccdc58, D930020B18Rik, Elobl, Fbxw15, Oas1h, Nlrp2, Pramel34, Pramel47, Pkd1l2, Sting1, Tspan4, Tubal3, Zar1l) were individually knocked out by the CRISPR/Cas9 system. Mating tests showed that these 13 mutant mouse lines were capable of producing offspring. In addition, we observed the histology section of ovaries and performed in vitro fertilization in five mutant mouse lines. We found no significant anomalies in terms of ovarian development and fertilization ability. In this study, 13 different mutant mouse lines generated by CRISPR/Cas9 genome editing technology revealed that these 13 genes are individually not essential for female fertility in mice.


Subject(s)
CRISPR-Cas Systems , Fertility , Ovary , Animals , Female , Ovary/metabolism , Fertility/genetics , Mice , CRISPR-Cas Systems/genetics , Oocytes/metabolism , Male , Gene Editing , Mice, Knockout , Mice, Inbred C57BL
2.
PNAS Nexus ; 3(3): pgae108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516277

ABSTRACT

Each year, infertility affects 15% of couples worldwide, with 50% of cases attributed to men. It is assumed that sperm head shape is important for sperm-zona pellucida (ZP) penetration but research has yet to elucidate why. We generated testis expressed 46 (Tex46) knockout mice to investigate the essential roles of TEX46 in mammalian reproduction. We used RT-PCR to demonstrate that Tex46 was expressed exclusively in the male reproductive tract in mice and humans. We created Tex46-/- mice using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system and analyzed their fertility. Tex46 null spermatozoa underwent further evaluation using computer-assisted sperm analysis, light microscopy, and ultrastructural microscopy. We used immunoblot analysis to elucidate relationships between TEX46 and other acrosome biogenesis-related proteins. Mouse and human TEX46 are testis-enriched and encode a transmembrane protein which is conserved from amphibians to mammals. Loss of the mouse TEX46 protein causes male sterility primarily due to abnormal sperm head formation and secondary effects on sperm motility. Tex46 null spermatozoa morphologically lack the typical hooked sperm head appearance and fail to penetrate through the ZP. Electron microscopy of the testicular germ cells reveals malformation of the acrosomal cap, with misshapen sperm head tips and the appearance of a gap between the acrosome head and the nucleus. TEX46 is essential for sperm head formation, sperm penetration through the ZP, and male fertility in mice, and is a putative contraceptive target in men.

3.
Sci Adv ; 9(4): eade7607, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36696506

ABSTRACT

Spermatozoa need to undergo an exocytotic event called the acrosome reaction before fusing with eggs. Although calcium ion (Ca2+) is essential for the acrosome reaction, its molecular mechanism remains unknown. Ferlin is a single transmembrane protein with multiple Ca2+-binding C2 domains, and there are six ferlins, dysferlin (DYSF), otoferlin (OTOF), myoferlin (MYOF), fer-1-like 4 (FER1L4), FER1L5, and FER1L6, in mammals. Dysf, Otof, and Myof knockout mice have been generated, and each knockout mouse line exhibited membrane fusion disorders such as muscular dystrophy in Dysf, deafness in Otof, and abnormal myogenesis in Myof. Here, by generating mutant mice of Fer1l4, Fer1l5, and Fer1l6, we found that only Fer1l5 is required for male fertility. Fer1l5 mutant spermatozoa could migrate in the female reproductive tract and reach eggs, but no acrosome reaction took place. Even a Ca2+ ionophore cannot induce the acrosome reaction in Fer1l5 mutant spermatozoa. These results suggest that FER1L5 is the missing link between Ca2+ and the acrosome reaction.


Subject(s)
Muscle Proteins , Testis , Male , Female , Animals , Mice , Cell Membrane/metabolism , Muscle Proteins/metabolism , Testis/metabolism , Membrane Fusion , Fertility , Spermatozoa/metabolism , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Andrology ; 11(5): 808-815, 2023 07.
Article in English | MEDLINE | ID: mdl-36209044

ABSTRACT

BACKGROUND: A safe, effective, and reversible nonhormonal male contraceptive drug is greatly needed for male contraception as well as for circumventing the side effects of female hormonal contraceptives. Phosducin-like 2 (PDCL2) is a testis-specific phosphoprotein in mice and humans. We recently found that male PDCL2 knockout mice are sterile due to globozoospermia caused by impaired sperm head formation, indicating that PDCL2 is a potential target for male contraception. Herein, our study for the first time developed a biophysical assay for PDCL2 allowing us to screen a series of small molecules, to study structure-activity relationships, and to discover two PDCL2 binders with novel chemical structure. OBJECTIVE: To identify a PDCL2 ligand for therapeutic male contraception, we performed DNA-encoded chemical library (DECL) screening and off-DNA hit validation using a unique affinity selection mass spectrometry (ASMS) biophysical profiling strategy. MATERIALS AND METHODS: We employed the screening process of DECL, which contains billions of chemically unique DNA-barcoded compounds generated through individual sequences of reactions and different combinations of functionalized building blocks. The structures of the PDCL2 binders are proposed based on the sequencing analysis of the DNA barcode attached to each individual DECL compound. The proposed structure is synthesized through multistep reactions. To confirm and determine binding affinity between the DECL identified molecules and PDCL2, we developed an ASMS assay that incorporates liquid chromatography with tandem mass spectrometry (LC-MS/MS). RESULTS: After a screening process of PDCL2 with DECLs containing >440 billion compounds, we identified a series of hits. The selected compounds were synthesized as off-DNA small molecules, characterized by spectroscopy data, and subjected to our ASMS/LC-MS/MS binding assay. By this assay, we discovered two novel compounds, which showed good binding affinity for PDCL2 in comparison to other molecules generated in our laboratory and which were further confirmed by a thermal shift assay. DISCUSSION AND CONCLUSION AND RELEVANCE: With the ASMS/LC-MS/MS assay developed in this paper, we successfully discovered a PDCL2 ligand that warrants further development as a male contraceptive.


Subject(s)
DNA , Small Molecule Libraries , Humans , Male , Female , Animals , Mice , DNA/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Drug Discovery , Ligands , Chromatography, Liquid , Tandem Mass Spectrometry , Semen/metabolism
5.
Andrology ; 11(5): 789-798, 2023 07.
Article in English | MEDLINE | ID: mdl-36278277

ABSTRACT

BACKGROUND: Each year, infertility affects 15% of couples worldwide, with 50% of cases attributed to men. Globozoospermia is an uncommon cause of male factor infertility, characterized by defects in sperm acrosome formation, leading to round-headed spermatozoa. OBJECTIVE: We generated Pdcl2 knockout mice to investigate the essential roles of PDCL2 in mammalian reproduction. MATERIALS AND METHODS: We used reverse transcription-polymerase chain reaction to demonstrate that PDCL2 was expressed exclusively in the male reproductive tract in mice and humans. We created Pdcl2 knockout mice using the CRISPR-Cas9 system and analyzed their fertility. Pdcl2 null spermatozoa underwent further evaluation using computer-assisted sperm analysis, light microscopy, and ultrastructural microscopy. We used immunoblot analysis and immunofluorescence to elucidate relationships between PDCL2 and other acrosomal proteins. RESULTS: The PDC family is highly conserved in eukaryotes. Mouse and human PDCL2 are testis enriched and localized to the testicular endoplasmic reticulum. Loss of the protein causes sterility because of abnormal acrosome biogenesis during spermiogenesis and immotility. Furthermore, Pdcl2 null spermatozoa have rounded heads, similar to globozoospermia in humans. Observation of the knockout testis shows a lack of acrosomal cap formation, aberrant localization of mitochondria in the sperm head, and misshapen nuclei. CONCLUSION: PDCL2 is essential for sperm acrosome development and male fertility in mice and is a putative contraceptive target in men.


Subject(s)
Acrosome , Nerve Tissue Proteins , Spermatozoa , Animals , Male , Mice , Acrosome/metabolism , Fertility , Infertility, Male/metabolism , Infertility, Male/pathology , Nerve Tissue Proteins/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/metabolism
6.
Andrology ; 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36428102

ABSTRACT

BACKGROUND: Spermatozoa become mature and competent for fertilization during transit from the caput epididymis to the cauda epididymis. However, detailed molecular mechanisms of epididymal sperm maturation are still unclear. Here, we focused on multiple epididymis-enriched genes: lipocalin family genes (Lcn5, Lcn6, Lcn8, Lcn9, and Lcn10) and Ly6 family genes (Ly6g5b and Ly6g5c). These genes are evolutionarily conserved in mammals and form clusters on chromosomes 2 and 17 in the mouse, respectively. OBJECTIVE: To clarify whether these genes are required for epididymal sperm maturation and acquisition of fertilizing ability, we generated knockout (KO) mice using the CRISPR/Cas9 system and analyzed their phenotype. MATERIALS AND METHODS: We generated four lines of KO mice: Lcn9 single KO, the lipocalin family quadruple KO (Lcn5, Lcn6, Lcn8, and Lcn10), quintuple KO (Lcn5, Lcn6, Lcn8, Lcn10, and Lcn9), and double KO of Ly6 family genes (Ly6g5b and Ly6g5c). RESULTS: Although the Lcn9 single KO did not affect male fertility, the quadruple KO and quintuple KO male mice were subfertile and mostly infertile, respectively, with a reduced amount of ADAM3, an essential protein for sperm binding to the zona pellucida. Further analysis revealed that the quintuple KO spermatozoa lack the CMTM2A/B that are required for ADAM3 maturation. Intriguingly, Ly6g5b and Ly6g5c double KO male mice also showed subfertility with reduced sperm ADAM3. CONCLUSION: These results suggest epididymal secretory proteins are involved in ADAM3 maturation and acquisition of sperm fertilizing ability.

7.
BMC Biol ; 20(1): 161, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831855

ABSTRACT

BACKGROUND: Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS: We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS: Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.


Subject(s)
Testis , Ubiquitin-Protein Ligases/metabolism , Animals , Fertility , Male , Mice , Semen/metabolism , Testis/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
8.
Reprod Med Biol ; 21(1): e12467, 2022.
Article in English | MEDLINE | ID: mdl-35619658

ABSTRACT

Purpose: Tulp2 (tubby-like protein 2) is a member of the tubby protein family and expressed predominantly in mouse testis. Recently, it was reported that Tulp2 knockout (KO) mice exhibited disrupted sperm tail morphology; however, it remains to be determined how TULP2 deletion causes abnormal tail formation. Methods: The authors analyzed male fertility, sperm morphology, and motility of two Tulp2 KO mouse lines that were generated using the conventional method that utilizes homologous recombination in embryonic stem (ES) cells as well as the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. Furthermore, the authors observed the spermatogenesis of Tulp2 KO mice in more detail using scanning and transmission electron microscopy (SEM and TEM). Results: Both mouse lines of Tulp2 KO exhibited male infertility, abnormal tail morphology, and impaired sperm motility. No overt abnormalities were found in the formation of the mitochondrial sheath in Tulp2 KO mice using the freeze-fracture method with SEM. In contrast, abnormal outer dense fiber (ODF) structure was observed in Tulp2 KO testis with TEM. Conclusions: TULP2 may play roles in the correct formation and/or maintenance of ODF, which may lead to abnormal tail morphology, impaired sperm motility, and male infertility.

9.
Commun Biol ; 5(1): 332, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393517

ABSTRACT

The process of sperm-egg fusion is critical for successful fertilization, yet the underlying mechanisms that regulate these steps have remained unclear in vertebrates. Here, we show that both mouse and zebrafish DCST1 and DCST2 are necessary in sperm to fertilize the egg, similar to their orthologs SPE-42 and SPE-49 in C. elegans and Sneaky in D. melanogaster. Mouse Dcst1 and Dcst2 single knockout (KO) sperm are able to undergo the acrosome reaction and show normal relocalization of IZUMO1, an essential factor for sperm-egg fusion, to the equatorial segment. While both single KO sperm can bind to the oolemma, they show the fusion defect, resulting that Dcst1 KO males become almost sterile and Dcst2 KO males become sterile. Similar to mice, zebrafish dcst1 KO males are subfertile and dcst2 and dcst1/2 double KO males are sterile. Zebrafish dcst1/2 KO sperm are motile and can approach the egg, but are defective in binding to the oolemma. Furthermore, we find that DCST1 and DCST2 interact with each other and are interdependent. These data demonstrate that DCST1/2 are essential for male fertility in two vertebrate species, highlighting their crucial role as conserved factors in fertilization.


Subject(s)
Sperm-Ovum Interactions , Zebrafish , Animals , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Spermatozoa/metabolism , Zebrafish/genetics , Zebrafish/metabolism
10.
J Biol Chem ; 298(3): 101720, 2022 03.
Article in English | MEDLINE | ID: mdl-35151686

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)-galactose-sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for in vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.


Subject(s)
Acetylgalactosamine , Glycosylphosphatidylinositols , Prion Diseases , Prions , Acetylgalactosamine/chemistry , Acetylgalactosamine/metabolism , Animals , Brain/metabolism , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Mice , Osteogenesis , Prion Diseases/metabolism , Prions/metabolism , Structure-Activity Relationship
11.
Asian J Androl ; 24(3): 266-272, 2022.
Article in English | MEDLINE | ID: mdl-34290169

ABSTRACT

Gene expression analyses suggest that more than 1000-2000 genes are expressed predominantly in mouse and human testes. Although functional analyses of hundreds of these genes have been performed, there are still many testis-enriched genes whose functions remain unexplored. Analyzing gene function using knockout (KO) mice is a powerful tool to discern if the gene of interest is essential for sperm formation, function, and male fertility in vivo. In this study, we generated KO mice for 12 testis-enriched genes, 1700057G04Rik, 4921539E11Rik, 4930558C23Rik, Cby2, Ldhal6b, Rasef, Slc25a2, Slc25a41, Smim8, Smim9, Tmem210, and Tomm20l, using the clustered regularly interspaced short palindromic repeats /CRISPR-associated protein 9 (CRISPR/Cas9) system. We designed two gRNAs for each gene to excise almost all the protein-coding regions to ensure that the deletions in these genes result in a null mutation. Mating tests of KO mice reveal that these 12 genes are not essential for male fertility, at least when individually ablated, and not together with other potentially compensatory paralogous genes. Our results could prevent other laboratories from expending duplicative effort generating KO mice, for which no apparent phenotype exists.


Subject(s)
Gene Editing , Testis , Animals , CRISPR-Cas Systems/genetics , Fertility/genetics , Humans , Male , Mice , Mice, Knockout , Testis/metabolism
12.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34556579

ABSTRACT

Fertilization is the fundamental process that initiates the development of a new individual in all sexually reproducing species. Despite its importance, our understanding of the molecular players that govern mammalian sperm-egg interaction is incomplete, partly because many of the essential factors found in nonmammalian species do not have obvious mammalian homologs. We have recently identified the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) protein Bouncer as an essential fertilization factor in zebrafish [S. Herberg, K. R. Gert, A. Schleiffer, A. Pauli, Science 361, 1029-1033 (2018)]. Here, we show that Bouncer's homolog in mammals, Sperm Acrosome Associated 4 (SPACA4), is also required for efficient fertilization in mice. In contrast to fish, in which Bouncer is expressed specifically in the egg, SPACA4 is expressed exclusively in the sperm. Male knockout mice are severely subfertile, and sperm lacking SPACA4 fail to fertilize wild-type eggs in vitro. Interestingly, removal of the zona pellucida rescues the fertilization defect of Spaca4-deficient sperm in vitro, indicating that SPACA4 is not required for the interaction of sperm and the oolemma but rather of sperm and the zona pellucida. Our work identifies SPACA4 as an important sperm protein necessary for zona pellucida penetration during mammalian fertilization.


Subject(s)
Antigens, Ly/metabolism , Fertilization , Infertility, Male/pathology , Membrane Glycoproteins/physiology , Receptors, Urokinase Plasminogen Activator/metabolism , Sperm-Ovum Interactions , Acrosome/metabolism , Acrosome/pathology , Animals , Antigens, Ly/genetics , Female , Infertility, Male/etiology , Infertility, Male/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Urokinase Plasminogen Activator/genetics , Zona Pellucida/metabolism , Zona Pellucida/pathology
13.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808082

ABSTRACT

Aldosterone excess is a cardiovascular risk factor. Aldosterone can directly stimulate an electrical remodeling of cardiomyocytes leading to cardiac arrhythmia and hypertrophy. L-type and T-type voltage-gated calcium (Ca2+) channels expression are increased by aldosterone in cardiomyocytes. To further understand the regulation of these channels expression, we studied the role of a transcriptional repressor, the inhibitor of differentiation/DNA binding protein 2 (Id2). We found that aldosterone inhibited the expression of Id2 in neonatal rat cardiomyocytes and in the heart of adult mice. When Id2 was overexpressed in cardiomyocytes, we observed a reduction in the spontaneous action potentials rate and an arrest in aldosterone-stimulated rate increase. Accordingly, Id2 siRNA knockdown increased this rate. We also observed that CaV1.2 (L-type Ca2+ channel) or CaV3.1, and CaV3.2 (T-type Ca2+ channels) mRNA expression levels and Ca2+ currents were affected by Id2 presence. These observations were further corroborated in a heart specific Id2- transgenic mice. Taken together, our results suggest that Id2 functions as a transcriptional repressor for L- and T-type Ca2+ channels, particularly CaV3.1, in cardiomyocytes and its expression is controlled by aldosterone. We propose that Id2 might contributes to a protective mechanism in cardiomyocytes preventing the presence of channels associated with a pathological state.


Subject(s)
Aldosterone/pharmacology , Calcium Channels, T-Type/metabolism , Inhibitor of Differentiation Protein 2/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, T-Type/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiology , Inhibitor of Differentiation Protein 2/genetics , Mice, Transgenic , Myocytes, Cardiac/drug effects
14.
BMC Biol ; 18(1): 103, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814578

ABSTRACT

BACKGROUND: The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. RESULTS: In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. CONCLUSIONS: Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.


Subject(s)
Epididymis/metabolism , Gene Expression , Testis/metabolism , Animals , Humans , Male , Mice , RNA-Seq , Reproduction
15.
Cell Mol Biol Lett ; 25: 40, 2020.
Article in English | MEDLINE | ID: mdl-32855642

ABSTRACT

BACKGROUND: Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored. METHODS: We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer. RESULTS: The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice. The expression of gamma-glutamylcysteine synthetase heavy subunit (γ-GCSc) and the in vitro activity of glutathione reductase (GR) were also higher, suggesting that the recycling of GSH and its de novo biosynthesis were augmented in transgenic hearts. Furthermore, the expression levels of glucose-6-phosphate dehydrogenase (G6PD, a rate-limiting enzyme for the PPP) and p62/SQSTM1 (a potent inducer of glycolysis and glutathione production) were elevated, while p62/SQSTM1 was upregulated at the mRNA level rather than as a result of autophagy inhibition. Consistent with this observation, nuclear factor erythroid-2 related factor 2 (Nrf2), Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) were activated, all of which are known to induce p62/SQSTM1 expression. CONCLUSIONS: Overexpression of miR-143 and miR-145 leads to a unique dilated cardiomyopathy phenotype with a reductive redox shift despite marked downregulation of HK2 expression. Reductive stress may be involved in a wider range of cardiomyopathies than previously thought.


Subject(s)
Cardiomyopathies/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Animals , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Reductase/metabolism , Glycolysis/physiology , Hexokinase/metabolism , Mice , Mice, Transgenic , Myosin Heavy Chains/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , RNA, Messenger/metabolism , Up-Regulation/physiology
16.
BMB Rep ; 53(9): 472-477, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32635982

ABSTRACT

Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis. [BMB Reports 2020; 53(9): 472-477].


Subject(s)
Cadherins/metabolism , Osteoblasts/metabolism , Animals , Cadherins/deficiency , Cadherins/genetics , Cell Differentiation , Homeostasis/genetics , Mice , Mice, Knockout , Osteoblasts/cytology , Osteogenesis/genetics , Protocadherins
17.
Biol Reprod ; 103(2): 254-263, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32529245

ABSTRACT

Spermatozoa are produced in the testis but gain their fertilizing ability during epididymal migration. This necessary step in sperm maturation includes posttranslational modification of sperm membrane proteins that includes protein processing by proteases. However, the molecular mechanism underpinning this epididymal sperm maturation remains unknown. In this study, we focused on transmembrane serine protease 12 (Tmprss12). Based on multi-tissue expression analysis by PCR, Tmprss12 was specifically expressed in the testis, and its expression started on day 10 postpartum, corresponding to the stage of zygotene spermatocytes. TMPRSS12 was detected in the acrosomal region of spermatozoa by immunostaining. To reveal the physiological function of TMPRSS12, we generated two knockout (KO) mouse lines using the CRISPR/Cas9 system. Both indel and large deletion lines were male sterile showing that TMPRSS12 is essential for male fertility. Although KO males exhibited normal spermatogenesis and sperm morphology, ejaculated spermatozoa failed to migrate from the uterus to the oviduct. Further analysis revealed that a disintegrin and metalloprotease 3 (ADAM3), an essential protein on the sperm membrane surface that is required for sperm migration, was disrupted in KO spermatozoa. Moreover, we found that KO spermatozoa showed reduced sperm motility via computer-assisted sperm analysis, resulting in a low fertilization rate in vitro. Taken together, these data indicate that TMPRSS12 has dual functions in regulating sperm motility and ADAM3-related sperm migration to the oviduct. Because Tmprss12 is conserved among mammals, including humans, our results may explain some genetic cases of idiopathic male infertility, and TMPRSS12 and its downstream cascade may be novel targets for contraception.


Subject(s)
Serine Endopeptidases/genetics , Sperm Motility/genetics , Spermatocytes/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism , Animals , Cell Shape/genetics , Male , Mice , Mice, Knockout , Serine Endopeptidases/metabolism , Spermatocytes/cytology , Spermatozoa/cytology
18.
Biol Reprod ; 103(2): 195-204, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32561905

ABSTRACT

As the world population continues to increase to unsustainable levels, the importance of birth control and the development of new contraceptives are emerging. To date, male contraceptive options have been lagging behind those available to women, and those few options available are not satisfactory to everyone. To solve this problem, we have been searching for new candidate target proteins for non-hormonal contraceptives. Testis-specific proteins are appealing targets for male contraceptives because they are more likely to be involved in male reproduction and their targeting by small molecules is predicted to have no on-target harmful effects on other organs. Using in silico analysis, we identified Erich2, Glt6d1, Prss58, Slfnl1, Sppl2c, Stpg3, Tex33, and Tex36 as testis-abundant genes in both mouse and human. The genes, 4930402F06Rik and 4930568D16Rik, are testis-abundant paralogs of Glt6d1 that we also discovered in mice but not in human, and were also included in our studies to eliminate the potential compensation. We generated knockout (KO) mouse lines of all listed genes using the CRISPR/Cas9 system. Analysis of all of the individual KO mouse lines as well as Glt6d1/4930402F06Rik/4930568D16Rik TKO mouse lines revealed that they are male fertile with no observable defects in reproductive organs, suggesting that these 10 genes are not required for male fertility nor play redundant roles in the case of the 3 Glt6D1 paralogs. Further studies are needed to uncover protein function(s), but in vivo functional screening using the CRISPR/Cas9 system is a fast and accurate way to find genes essential for male fertility, which may apply to studies of genes expressed elsewhere. In this study, although we could not find any potential protein targets for non-hormonal male contraceptives, our findings help to streamline efforts to find and focus on only the essential genes.


Subject(s)
Fertility/genetics , Testis/metabolism , Animals , CRISPR-Cas Systems , Gene Editing , Male , Mice , Mice, Knockout , Spermatogenesis/genetics
19.
Science ; 368(6495): 1132-1135, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32499443

ABSTRACT

The lumicrine system is a postulated signaling system in which testis-derived (upstream) secreted factors enter the male reproductive tract to regulate epididymal (downstream) pathways required for sperm maturation. Until now, no lumicrine factors have been identified. We demonstrate that a testicular germ-cell-secreted epidermal growth factor-like protein, neural epidermal growth factor-like-like 2 (NELL2), specifically binds to an orphan receptor tyrosine kinase, c-ros oncogene 1 (ROS1), and mediates the differentiation of the initial segment (IS) of the caput epididymis. Male mice in which Nell2 had been knocked out were infertile. The IS-specific secreted proteases, ovochymase 2 (OVCH2) and A disintegrin and metallopeptidase 28 (ADAM28), were expressed upon IS maturation, and OVCH2 was required for processing of the sperm surface protein ADAM3, which is required for sperm fertilizing ability. This work identifies a lumicrine system essential for testis-epididymis-spermatozoa (NELL2-ROS1-OVCH2-ADAM3) signaling and male fertility.


Subject(s)
Cell Communication/physiology , Endopeptidases/metabolism , Epididymis/metabolism , Fertility , Infertility, Male/metabolism , Nerve Tissue Proteins/metabolism , Spermatozoa/metabolism , Testis/metabolism , ADAM Proteins/metabolism , Animals , Cell Communication/genetics , Endopeptidases/genetics , Infertility, Male/genetics , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
20.
Proc Natl Acad Sci U S A ; 117(21): 11493-11502, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393636

ABSTRACT

Sperm-oocyte membrane fusion is one of the most important events for fertilization. So far, IZUMO1 and Fertilization Influencing Membrane Protein (FIMP) on the sperm membrane and CD9 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been identified as fusion-required proteins. However, the molecular mechanisms for sperm-oocyte fusion are still unclear. Here, we show that testis-enriched genes, sperm-oocyte fusion required 1 (Sof1/Llcfc1/1700034O15Rik), transmembrane protein 95 (Tmem95), and sperm acrosome associated 6 (Spaca6), encode sperm proteins required for sperm-oocyte fusion in mice. These knockout (KO) spermatozoa carry IZUMO1 but cannot fuse with the oocyte plasma membrane, leading to male sterility. Transgenic mice which expressed mouse Sof1, Tmem95, and Spaca6 rescued the sterility of Sof1, Tmem95, and Spaca6 KO males, respectively. SOF1 and SPACA6 remain in acrosome-reacted spermatozoa, and SPACA6 translocates to the equatorial segment of these spermatozoa. The coexpression of SOF1, TMEM95, and SPACA6 in IZUMO1-expressing cultured cells did not enhance their ability to adhere to the oocyte membrane or allow them to fuse with oocytes. SOF1, TMEM95, and SPACA6 may function cooperatively with IZUMO1 and/or unknown fusogens in sperm-oocyte fusion.


Subject(s)
Acrosome Reaction , Membrane Proteins , Seminal Plasma Proteins , Spermatozoa/physiology , Acrosome Reaction/genetics , Acrosome Reaction/physiology , Animals , Female , Infertility, Male/genetics , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...