Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 585, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862878

ABSTRACT

BACKGROUND: Anguillid eels spend their larval period as leptocephalus larvae that have a unique and specialized body form with leaf-like and transparent features, and they undergo drastic metamorphosis to juvenile glass eels. Less is known about the transition of leptocephali to the glass eel stage, because it is difficult to catch the metamorphosing larvae in the open ocean. However, recent advances in rearing techniques for the Japanese eel have made it possible to study the larval metamorphosis of anguillid eels. In the present study, we investigated the dynamics of gene expression during the metamorphosis of Japanese eel leptocephali using RNA sequencing. RESULTS: During metamorphosis, Japanese eels were classified into 7 developmental stages according to their morphological characteristics, and RNA sequencing was used to collect gene expression data from each stage. A total of 354.8 million clean reads were generated from the body and 365.5 million from the head, after the processing of raw reads. For filtering of genes that characterize developmental stages, a classification model created by a Random Forest algorithm was built. Using the importance of explanatory variables feature obtained from the created model, we identified 46 genes selected in the body and 169 genes selected in the head that were defined as the "most characteristic genes" during eel metamorphosis. Next, network analysis and subsequently gene clustering were conducted using the most characteristic genes and their correlated genes, and then 6 clusters in the body and 5 clusters in the head were constructed. Then, the characteristics of the clusters were revealed by Gene Ontology (GO) enrichment analysis. The expression patterns and GO terms of each stage were consistent with previous observations and experiments during the larval metamorphosis of the Japanese eel. CONCLUSION: Genome and transcriptome resources have been generated for metamorphosing Japanese eels. Genes that characterized metamorphosis of the Japanese eel were identified through statistical modeling by a Random Forest algorithm. The functions of these genes were consistent with previous observations and experiments during the metamorphosis of anguillid eels.


Subject(s)
Anguilla , Gene Expression Profiling , Larva , Metamorphosis, Biological , Animals , Metamorphosis, Biological/genetics , Larva/growth & development , Larva/genetics , Anguilla/genetics , Anguilla/growth & development , Transcriptome , Gene Expression Regulation, Developmental
2.
Sci Rep ; 13(1): 3190, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823281

ABSTRACT

Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.


Subject(s)
Cyprinidae , Perciformes , Animals , Vasotocin/genetics , Gene Editing , Perciformes/genetics , Aggression , Cyprinidae/genetics
3.
Int J Genomics ; 2021: 7226353, 2021.
Article in English | MEDLINE | ID: mdl-34957293

ABSTRACT

Fish species have a variety of sex determination systems. Tunas (genus Thunnus) have an XY genetic sex determination system. However, the Y chromosome or responsible locus has not yet been identified in males. In a previous study, a female genome of Pacific bluefin tuna (T. orientalis) was sequenced, and candidates for sex-associated DNA polymorphisms were identified by a genome-wide association study using resequencing data. In the present study, we sequenced a male genome of Pacific bluefin tuna by long-read and linked-read sequencing technologies and explored male-specific loci through a comparison with the female genome. As a result, we found a unique region carrying the male-specific haplotype, where a homolog of estrogen sulfotransferase gene was predicted to be encoded. The genome-wide mapping of previously resequenced data indicated that, among the functionally annotated genes, only this gene, named sult1st6y, was paternally inherited in the males of Pacific bluefin tuna. We reviewed the RNA-seq data of southern bluefin tuna (T. maccoyii) in the public database and found that sult1st6y of southern bluefin tuna was expressed in all male testes, but absent or suppressed in the female ovary. Since estrogen sulfotransferase is responsible for the inactivation of estrogens, it is reasonable to assume that the expression of sult1st6y in gonad cells may inhibit female development, thereby inducing the individuals to become males. Thus, our results raise a promising hypothesis that sult1st6y is the sex determination gene in Thunnus fishes or at least functions at a crucial point in the sex-differentiation cascade.

4.
Sci Rep ; 11(1): 7031, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846364

ABSTRACT

Many studies have investigated the ability to identify species from environmental DNA (eDNA). However, even when individual species are identified, the accurate estimation of their abundances by traditional eDNA analyses has been still difficult. We previously developed a novel analytical method called HaCeD-Seq (Haplotype Count from eDNA), which focuses on the mitochondrial D-loop sequence. The D-loop is a rapidly evolving sequence and has been used to estimate the abundance of eel species in breeding water. In the current study, we have further improved this method by applying unique molecular identifier (UMI) tags, which eliminate the PCR and sequencing errors and extend the detection range by an order of magnitude. Based on this improved HaCeD-Seq pipeline, we computed the abundance of Pacific bluefin tuna (Thunnus orientalis) in aquarium tanks at the Tokyo Sea Life Park (Kasai, Tokyo, Japan). This tuna species is commercially important but is at high risk of resource depletion. With the developed UMI tag method, 90 out of 96 haplotypes (94%) were successfully detected from Pacific bluefin tuna eDNA. By contrast, only 29 out of 96 haplotypes (30%) were detected when UMI tags were not used. Our findings indicate the potential for conducting non-invasive fish stock surveys by sampling eDNA.


Subject(s)
DNA, Environmental/genetics , Tuna/genetics , Animals , Haplotypes , Population Density , Sequence Analysis, DNA
5.
Microb Drug Resist ; 27(3): 301-310, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32706619

ABSTRACT

Aims: Fish pathogenic Lactococcus garvieae serotype II has been isolated from cultured fish species in Japan. This study aimed to investigate the molecular mechanisms of lincomycin (LCM)-resistant L. garvieae serotype II and assess the molecular basis for lincosamides-streptogramins A-pleuromutilins (LSAP)-resistant phenotype. Results: We identified a novel lsa(D)-encoded 497-aa ATP-binding cassette F (ABC-F) protein in the LSAP-resistant strains. Amino acid identities of 41.25-54.73% were obtained between the deduced amino acids from Lsa(D) and other Lsa-type ABC-F proteins. Furthermore, comparative analysis revealed that the allele of lsa(D) with single point mutation at 233 aa position (TGG → TAG; tryptophan→premature termination codon [PTC]) in LSAP-sensitive strains. The minimum inhibitory concentrations of antimicrobials against the lsa(D) complementary strain and lsa(D)-disrupted mutant confirmed that lsa(D) conferred the LSAP-resistant phenotype. The reverse transcription-polymerase chain reaction could not detect the noncoding region of lsa(D) allelic variant in the LSAP-sensitive strains. Additionally, the PTC (TAG) in LCM-sensitive strains was replaced by TGG, CAG, or TAT in the laboratory-induced revertant mutants. Conclusions: The novel lsa(D) conferred the LSAP-resistant phenotype in clinically LCM-resistant L. garvieae serotype II strains. However, the allele of lsa(D) gene containing the PTC was found in L. garvieae serotype II, resulting in the LSAP-susceptible phenotype.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diterpenes/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Lactococcus/drug effects , Lincosamides/pharmacology , Polycyclic Compounds/pharmacology , Streptogramin A/pharmacology , Animals , Aquaculture , Fishes , Genes, Bacterial/genetics , Microbial Sensitivity Tests , Phenotype , Polymorphism, Single Nucleotide , Pleuromutilins
7.
Sci Rep ; 10(1): 8378, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32409725

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 10(1): 4620, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165658

ABSTRACT

A novel Asfarvirus-like virus is proposed as the etiological agent responsible for mass mortality in abalone. The disease, called abalone amyotrophia, originally was recognized in the 1980s, but efforts to identify a causative agent were unsuccessful. We prepared a semi-purified fraction by nuclease treatment and ultracentrifugation of diseased abalone homogenate, and the existence of the etiological agent in the fraction was confirmed by a challenge test. Using next-generation sequencing and PCR-based epidemiological surveys, we obtained a partial sequence with similarity to a member of the family Asfarviridae. BLASTP analysis of the predicted proteins against a virus database resulted in 48 proteins encoded by the novel virus with top hits against proteins encoded by African swine fever virus (ASFV). Phylogenetic analyses of predicted proteins of the novel virus confirmed that ASFV represents the closest relative. Comparative genomic analysis revealed gene-order conservation between the novel virus and ASFV. In situ hybridization targeting the gene encoding the major capsid protein of the novel virus detected positive signals only in tissue from diseased abalone. The results of this study suggest that the putative causative agent should be considered a tentative new member of the family Asfarviridae, which we provisionally designate abalone asfa-like virus (AbALV).

9.
Arch Virol ; 165(2): 303-311, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31786689

ABSTRACT

A novel jumbo bacteriophage (myovirus) is described. The lytic phage of Tenacibaculum maritimum, which is the etiological agent of tenacibaculosis in a variety of farmed marine fish worldwide, was plaque-isolated from seawater around a fish aquaculture field in Japan. The phage had an isometric head 110-120 nm in diameter, from which several 50- to 100-nm-long flexible fiber-like appendages emanate, and a 150-nm-long rigid contractile tail. The full genomes of the two representative phages (PTm1 and PTm5) were 224,680 and 226,876 bp long, respectively, both with 29.7% GC content, and the number of predicted open reading frames (ORFs) was 308 and 306, respectively. The average nucleotide sequence identity between PTm1 and PTm5 was 99.95%, indicating they are quite similar to each other. A genetic relationship was found in 15.0-16.6% of the predicted ORFs among the T. maritimum phages PTm1 and PTm5, the Tenacibaculum spp. phage pT24, and the Sphingomonas paucimobilis phage PAU. Phylogenetic analysis based on the terminase large subunit genes revealed that these four phages (PTm1, PTm5, pT24 and PAU) are more closely related than the other 10 jumbo myoviruses that have similar genome sizes. Transmission electron microscopy observations suggest that the head fibers of the T. maritimum phage function as tentacles to search and recognize the host cell surface to facilitate infection.


Subject(s)
Bacteriophages/genetics , Genome, Viral/genetics , Tenacibaculum/genetics , Animals , Aquaculture , Base Composition , Base Sequence/genetics , Fishes/virology , Japan , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA/methods , Viral Proteins/genetics
10.
Harmful Algae ; 89: 101660, 2019 11.
Article in English | MEDLINE | ID: mdl-31672234

ABSTRACT

Since 2002, blooms of Alexandrium catenella sensu Fraga et al. (2015) and paralytic shellfish toxicity events have occurred almost yearly in Osaka Bay, Japan. To better understand the triggers for reoccurring A. catenella blooms in Osaka Bay, phytoplankton community was monitored during the spring seasons of 2012-2015. Monitoring was performed using massively parallel sequencing (MPS)-based technique on amplicon sequences of the 18S rRNA gene. Dense blooms of A. catenella occurred every year except in 2012, however, there was no significant correlation with the environmental parameters investigated. Plankton community diversity decreased before and middle of the A. catenella blooms, suggesting that the decline in diversity could be an indicator for the bloom occurrence. The yearly abundance pattern of A. catenella cells obtained by morphology-based counting coincided with the relative sequence abundances, which supports the effectiveness of MPS-based phytoplankton monitoring.


Subject(s)
Dinoflagellida , Bays , High-Throughput Nucleotide Sequencing , Japan , Phytoplankton
11.
Sci Rep ; 9(1): 14450, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31595011

ABSTRACT

The Pacific bluefin tuna, Thunnus orientalis, is a highly migratory species that is widely distributed in the North Pacific Ocean. Like other marine species, T. orientalis has no external sexual dimorphism; thus, identifying sex-specific variants from whole genome sequence data is a useful approach to develop an effective sex identification method. Here, we report an improved draft genome of T. orientalis and male-specific DNA markers. Combining PacBio long reads and Illumina short reads sufficiently improved genome assembly, with a 38-fold increase in scaffold contiguity (to 444 scaffolds) compared to the first published draft genome. Through analysing re-sequence data of 15 males and 16 females, 250 male-specific SNPs were identified from more than 30 million polymorphisms. All male-specific variants were male-heterozygous, suggesting that T. orientalis has a male heterogametic sex-determination system. The largest linkage disequilibrium block (3,174 bp on scaffold_064) contained 51 male-specific variants. PCR primers and a PCR-based sex identification assay were developed using these male-specific variants. The sex of 115 individuals (56 males and 59 females; sex was diagnosed by visual examination of the gonads) was identified with high accuracy using the assay. This easy, accurate, and practical technique facilitates the control of sex ratios in tuna farms. Furthermore, this method could be used to estimate the sex ratio and/or the sex-specific growth rate of natural populations.


Subject(s)
Genetic Markers , Genome , Tuna/genetics , Animals , Female , Male , Pacific Ocean , Polymerase Chain Reaction/veterinary , Sex Determination Analysis/methods , Sex Determination Analysis/veterinary , Sex Determination Processes , Whole Genome Sequencing/veterinary
12.
Sci Rep ; 9(1): 13871, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554877

ABSTRACT

In bluefin tuna aquaculture, high mortalities of hatchery-reared juveniles occur in sea cages owing to wall collisions that are caused by high-speed swimming in panic due to changes in illuminance. Here, we report that targeted gene mutagenesis of the ryanodine receptor (RyR1b), which allows the sarcoplasmic reticulum to release Ca2+ in fast skeletal muscle, using highly active Platinum TALENs caused slow swimming behaviour in response to external stimuli in Pacific bluefin tuna (PBT) larvae. This characteristic would be a useful trait to prevent wall collisions in aquaculture production. A pair of Platinum TALENs targeting exons 2 and 43 of the PBT ryr1b gene induced deletions in each TALEN target site of the injected embryos with extremely high efficiency. In addition, ryr1b expression was significantly decreased in the mutated G0 larvae at 7 days after hatching (DAH). A touch-evoked escape behaviour assay revealed that the ryr1b-mutated PBT larvae swam away much less efficiently in response to mechanosensory stimulation at 7 DAH than did the wild-type larvae. Our results demonstrate that genome editing technologies are effective tools for determining the functional characterization of genes in a comparatively short period, and create avenues for facilitating genetic studies and breeding of bluefin tuna species.


Subject(s)
Ryanodine Receptor Calcium Release Channel/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Tuna/physiology , Animals , Aquaculture/methods , Female , Gene Expression Regulation , Larva , Male , Mutagenesis, Site-Directed , Platinum , Ryanodine Receptor Calcium Release Channel/physiology , Swimming/physiology , Tuna/genetics
13.
Mar Genomics ; 48: 100696, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31301990

ABSTRACT

To date, a number of bacteriophages that infect Lactococcus garvieae isolated from marine fish have been identified. However, the evolutionary insight between L. garvieae phages and other viral community have not yet been immersedly investigated. In this study, completed genomic sequence of phage PLgY-30 was obtained, a comparative analysis of three lytic phages, which have been using for phage typing and treatment of L. garvieae infecting marine fish, is conducted. The results revealed that the genomes of lytic phages specific for L. garvieae isolated from diseased marine fish share a high level of homology and almost all proteins are conserved. At genome level, no similarity was detected for either PLgY-30 or PLgY-16, while PLgW-1 shares only very limited homology (1%) with other sequences in Genbank database. In addition, the function of only 35% of ORFs in the PLgY-30 phage genomes could be predicted, demonstrating that it is novel phage. At protein level, lytic phage proteins shared a significant similarity to various proteins of global phage species isolated from dairy fermentation facilities that utilize L. lactis as a primary starter culture, called the 936 phage group. Genome organization and architecture of three lytic phages are also similar to that of the 936 phage group. To our knowledge, this is the first time lytic bacteriophages infecting L. garvieae from marine fish were characterized to genome level.


Subject(s)
Bacteriophages/classification , Genome, Viral , Genomics , Lactococcus/virology , Amino Acid Sequence , Biological Evolution , INDEL Mutation , Lactococcus lactis/virology , Open Reading Frames , Phylogeny
14.
Microbiol Immunol ; 63(7): 243-250, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31136000

ABSTRACT

Lancefield group C Streptococcus dysgalactiae causes infections in farmed fish. Here, the genome of S. dysgalactiae strain kdys0611, isolated from farmed amberjack (Seriola dumerili) was sequenced. The complete genome sequence of kdys0611 consists of a single chromosome and five plasmids. The chromosome is 2,142,780 bp long and has a GC content of 40%. It possesses 2061 coding sequences and 67 tRNA and 6 rRNA operons. One clustered regularly interspaced short palindromic repeat, 125 insertion sequences, and four predicted prophage elements were identified. Phylogenetic analysis based on 126 core genes suggested that the kdys0611 strain is more closely related to S. dysgalactiae subsp. dysgalactiae than to S. dysgalactiae subsp. equisimilis. The genome of kdys0611 harbors 87 genes with sequence similarity to putative virulence-associated genes identified in other bacteria, of which 57 exhibit amino acid identity (>52%) to genes of the S. dysgalactiae subsp. equisimilis GGS124 human clinical isolate. Four putative virulence genes, emm5 (FGCSD_0256), spg_2 (FGCSD_1961), skc (FGCSD_1012), and cna (FGCSD_0159), in kdys0611 did not show significant homology with any deposited S. dysgalactiae genes. The chromosomal sequence of kdys0611 has been deposited in GenBank under Accession No. AP018726. This is the first report of the complete genome sequence of S. dysgalactiae isolated from fish.


Subject(s)
Fishes/microbiology , Streptococcal Infections/veterinary , Streptococcus/genetics , Virulence Factors/genetics , Whole Genome Sequencing , Animals , Base Composition , CRISPR-Cas Systems , Genome, Bacterial , Humans , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA , Streptococcal Infections/microbiology , Streptococcus/classification , Streptococcus/isolation & purification , Virulence/genetics
15.
DNA Res ; 25(5): 547-560, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30329019

ABSTRACT

Seriola quinqueradiata (yellowtail) is the most widely farmed and economically important fish in aquaculture in Japan. In this study, we used the genome of haploid yellowtail fish larvae for de novo assembly of whole-genome sequences, and built a high-quality draft genome for the yellowtail. The total length of the assembled sequences was 627.3 Mb, consisting of 1,394 scaffold sequences (>2 kb) with an N50 length of 1.43 Mb. A total of 27,693 protein-coding genes were predicted for the draft genome, and among these, 25,832 predicted genes (93.3%) were functionally annotated. Given our lack of knowledge of the yellowtail digestive system, and using the annotated draft genome as a reference, we conducted an RNA-Seq analysis of its three digestive organs (stomach, intestine and rectum). The RNA-Seq results highlighted the importance of certain genes in encoding proteolytic enzymes necessary for digestion and absorption in the yellowtail gastrointestinal tract, and this finding will accelerate development of formulated feeds for this species. Since this study offers comprehensive annotation of predicted protein-coding genes, it has potential broad application to our understanding of yellowtail biology and aquaculture.


Subject(s)
Fishes/genetics , Gastrointestinal Tract/metabolism , Genome , Genomics , Transcriptome , Animals , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Genetic Linkage , Genomics/methods , Molecular Sequence Annotation , Proteolysis , Whole Genome Sequencing
16.
Mol Biol Rep ; 45(6): 2831-2834, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30242666

ABSTRACT

Syngnathids (pipefishes, seahorses and seadragons) are vulnerable to human-mediated habitat perturbation. The Pacific seaweed pipefish Syngnathus schlegeli has a large distribution in the northwestern Pacific, where deterioration, loss and fragmentation of its seagrass habitat are occurring through coastal development. So far, few studies have been conducted to access the genetic structure and conservation status of S. schlegeli because of the low number of genetic markers currently described. Nineteen polymorphic microsatellite markers were developed for S. schlegeli using next-generation sequencing, and characterized in 32 individuals. The mean number of alleles was 14, with 2-28 alleles per locus. The estimates of observed heterozygosity (HO) and expected heterozygosity (HE) varied depending on the locus, ranging from 0.063 to 1.000, and from 0.062 to 0.969, respectively. Seventeen of the 19 microsatellites conformed to Hardy-Weinberg equilibrium. These new microsatellite markers should provide a wealth of information for studies on conservation genetics and the behavioral ecology of S. schlegeli.


Subject(s)
Microsatellite Repeats/genetics , Smegmamorpha/genetics , Alleles , Animals , Gene Frequency/genetics , Genetic Loci/genetics , Genetic Markers/genetics , Genetics, Population , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Genetic/genetics
17.
PLoS One ; 13(8): e0201784, 2018.
Article in English | MEDLINE | ID: mdl-30157280

ABSTRACT

The Japanese eel (Anguilla japonica) is among the most important aquaculture fish species in Eastern Asia. The present study aimed to identify the genetic parameters underlying body size and the timing at metamorphosis from leptocephali to glass eels in captive-bred Japanese eels, with the intent to foster sustainable development. Larvae from a partly factorial cross (14 sires × 11 dams) were reared until the point of metamorphosis into glass eels. In these organisms, we observed moderate heritability and mild genetic correlations among traits related to body size (h2 = 0.16-0.33) and timing at metamorphosis (h2 = 0.36-0.41). In an F1 full-sib family, quantitative trait loci (QTL) mapping for these traits identified one significant (genome-wide P < 0.05) and five suggestive QTLs (chromosome-wide P < 0.05). These results suggest that in the Japanese eel, metamorphic traits exhibit a polygenic genetic structure comprising many QTLs with small effects. In addition, we updated the genetic linkage map for the Japanese eel and integrated it with our newly constructed de novo genome assembly. The information and tools generated from this study will contribute to the development of freshwater eel genetics and genomics.


Subject(s)
Anguilla/genetics , Body Size/genetics , Metamorphosis, Biological/genetics , Quantitative Trait Loci , Anguilla/anatomy & histology , Anguilla/growth & development , Animals , Aquaculture , Breeding , Chromosome Mapping , Female , Genetic Linkage , Male , Models, Genetic , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Sequence Analysis, DNA
18.
J Fish Dis ; 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29882274

ABSTRACT

Since 2011, high mortality rates and symptoms consistent with vibriosis have been observed in farmed amberjack (Seriola dumerili) in Japan. To identify 41 strains isolated from diseased amberjack, a multilocus sequence analysis using nine concatenated genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, topA and 16S rRNA) was conducted. Twenty-seven strains were identified as Vibrio harveyi, suggesting an epidemic of V. harveyi infection in amberjack farms. Other strains were identified as Vibrio anguillarum, Vibrio owensii and Photobacterium damselae subsp. damselae. To develop an efficient diagnostic method for vibriosis in amberjack, a multiplex PCR system was developed to identify V. anguillarum, V. harveyi and P. damselae subsp. damselae. The method successfully discriminated between these three bacterial species, with amplification products of 350 bp for V. anguillarum, 545 bp for V. harveyi and 887 bp for P. damselae subsp. damselae and can be used for diagnosis in aquaculture farms.

19.
PLoS One ; 13(5): e0197040, 2018.
Article in English | MEDLINE | ID: mdl-29738551

ABSTRACT

Japanese eel (Anguilla japonica) constitutes one of the most important food fish in Japan; accordingly, genome sequencing and linkage mapping have been conducted for the purpose of artificial cultivation. In the next stage, integration of genomic sequences within linkage groups (LG) is required to construct higher-resolution genetic markers for quantitative trait loci mapping and selective breeding of beneficial traits in farming. In order to identify LG1-linked scaffolds from the draft genome assembly (323,776 scaffolds) reported previously, we attempted to isolate chromosomes corresponding to LG1 by flow sorting and subsequent analyses. Initially, single chromosomes were randomly collected by chromosome sorting and subjected to whole-genome amplification (WGA). A total of 60 WGA samples were screened by PCR with primers for a known LG1-linked scaffold, and five positive WGA samples were sequenced by next-generation sequencing (NGS). Following reference mapping analysis of the NGS reads, four of the five WGA samples were found to be enriched by LG1-linked sequences. These samples were cytogenetically assigned to chromosome 5 by fluorescence in situ hybridization. Using blastn searches with 82,081 contigs constructed from the NGS reads of the four WGA samples as queries, 2323 scaffolds were identified as putative LG1-linked scaffolds from the draft genome assembly. The total length of the putative LG1-linked scaffolds was 99.0 Mb, comparable to the estimated DNA amounts of chromosome 5 (91.1 Mb). These results suggest that the methodology developed herein is applicable to isolate specific chromosome DNAs and integrate unanchored scaffold sequences onto a particular LG and chromosome even in teleost fishes, in which isolation of specific chromosomes by flow sorting is generally difficult owing to similar morphologies, sizes, and GC-contents among chromosomes in the genome. The putative LG1-linked scaffolds of Japanese eel contain a total of 6833 short tandem repeats which will be available for higher-resolution linkage mapping.


Subject(s)
Eels/genetics , Genetic Linkage/genetics , High-Throughput Nucleotide Sequencing/methods , Quantitative Trait Loci/genetics , Animals , Chromosome Mapping/methods , Chromosomes/genetics , Genetic Markers/genetics , In Situ Hybridization, Fluorescence , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics
20.
Vaccine ; 36(19): 2643-2649, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29631886

ABSTRACT

Predicting antigens that would be protective is crucial for the development of recombinant vaccine using genome based vaccine development, also known as reverse vaccinology. High-throughput antigen screening is effective for identifying vaccine target genes, particularly for pathogens for which minimal antigenicity data exist. Using red sea bream iridovirus (RSIV) as a research model, we developed enzyme-linked immune sorbent assay (ELISA) based RSIV-derived 72 recombinant antigen array to profile antiviral antibody responses in convalescent Japanese amberjack (Seriola quinqueradiata). Two and three genes for which the products were unrecognized and recognized, respectively, by antibodies in convalescent serum were selected for recombinant vaccine preparation, and the protective effect was examined in infection tests using Japanese amberjack and greater amberjack (S. dumerili). No protection was provided by vaccines prepared from gene products unrecognized by convalescent serum antibodies. By contrast, two vaccines prepared from gene products recognized by serum antibodies induced protective immunity in both fish species. These results indicate that ELISA array screening is effective for identifying antigens that induce protective immune responses. As this method does not require culturing of pathogens, it is also suitable for identifying protective antigens to un-culturable etiologic agents.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Iridovirus/genetics , Perciformes/immunology , Recombinant Fusion Proteins/immunology , Viral Vaccines/pharmacology , Animals , Antibodies, Viral/analysis , Antibodies, Viral/immunology , Antigens, Viral/genetics , Enzyme-Linked Immunosorbent Assay/instrumentation , Fish Diseases/prevention & control , Fish Diseases/virology , Iridovirus/pathogenicity , Recombinant Fusion Proteins/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...