Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Article En, Es | MEDLINE | ID: mdl-38584064

AIM: Epidemiological evidence suggests adherence to vegetable-rich diets is associated to atheroprotective effects and bioactive components are most likely to play a relevant role. The notion of inter-kingdom regulation has opened a new research paradigm and perhaps microRNAs (miRNAs) from edible vegetables could influence consumer gene expression and lead to biological effects. We aimed to investigate the potential impact of broccoli-derived miRNAs on cellular cholesterol efflux in vitro. METHODS: Four miRNAs (miR159a, miR159b, miR166a and miR403) from Brassica oleracea var. italica (broccoli), a widely consumed cruciferous vegetable, were selected for further investigation, based on their high abundancy in this vegetable and their presence in other plants. Selected miRNAs were synthesized with a 3'-terminal 2'-O-methylation and their cellular toxicity, in vitro gastrointestinal resistance and cellular uptake were evaluated. Potential target genes within the mammalian transcriptome were assessed in silico following pathway analysis. In vitro cholesterol efflux was assessed in human THP-1-derived macrophages. RESULTS: miRNAs survival to in vitro GI digestion was around 1%, although some variation was seen between the four candidates. Cellular uptake by mammalian cells was confirmed, and an increase in cholesterol efflux was observed. Pathway analysis suggested these miRNAs are involved in biological processes related to phosphorylation, phosphatidylinositol and Wnt signaling, and to the insulin/IGF pathway. CONCLUSIONS: Health-promoting properties attributed to cruciferous vegetables, might be mediated (at least in part) through miRNA-related mechanisms.

2.
Cells ; 13(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38534380

Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Rabbits , Fluvastatin/metabolism , Foam Cells/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Cholesterol/metabolism
3.
Surg Laparosc Endosc Percutan Tech ; 34(1): 1-8, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37963307

BACKGROUND: High CO 2 pneumoperitoneum pressure during laparoscopy adversely affects the peritoneal environment. This study hypothesized that low pneumoperitoneum pressure may be linked to less peritoneal damage and possibly to better clinical outcomes. MATERIALS AND METHODS: One hundred patients undergoing scheduled laparoscopic cholecystectomy were randomized 1:1 to low or to standard pneumoperitoneum pressure. Peritoneal biopsies were performed at baseline time and 1 hour after peritoneum insufflation in all patients. The primary outcome was peritoneal remodeling biomarkers and apoptotic index. Secondary outcomes included biomarker differences at the studied times and some clinical variables such as length of hospital stay, and quality and safety issues related to the procedure. RESULTS: Peritoneal IL6 after 1 hour of surgery was significantly higher in the standard than in the low-pressure group (4.26±1.34 vs. 3.24±1.21; P =0.001). On the contrary, levels of connective tissue growth factor and plasminogen activator inhibitor-I were higher in the low-pressure group (0.89±0.61 vs. 0.61±0.84; P =0.025, and 0.74±0.89 vs. 0.24±1.15; P =0.028, respectively). Regarding apoptotic index, similar levels were found in both groups and were 44.0±10.9 and 42.5±17.8 in low and standard pressure groups, respectively. None of the secondary outcomes showed differences between the 2 groups. CONCLUSIONS: Peritoneal inflammation after laparoscopic cholecystectomy is higher when surgery is performed under standard pressure. Adhesion formation seems to be less in this group. The majority of patients undergoing surgery under low pressure were operated under optimal workspace conditions, regardless of the surgeon's expertise.


Cholecystectomy, Laparoscopic , Insufflation , Laparoscopy , Pneumoperitoneum , Humans , Peritoneum/surgery , Cholecystectomy, Laparoscopic/adverse effects , Cholecystectomy, Laparoscopic/methods , Pneumoperitoneum/etiology , Insufflation/adverse effects , Insufflation/methods , Laparoscopy/methods , Pneumoperitoneum, Artificial/adverse effects , Pneumoperitoneum, Artificial/methods
4.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article En | MEDLINE | ID: mdl-37108800

Mutations in APOB are the second most frequent cause of familial hypercholesterolemia (FH). APOB is highly polymorphic, and many variants are benign or of uncertain significance, so functional analysis is necessary to ascertain their pathogenicity. Our aim was to identify and characterize APOB variants in patients with hypercholesterolemia. Index patients (n = 825) with clinically suspected FH were analyzed using next-generation sequencing. In total, 40% of the patients presented a variant in LDLR, APOB, PCSK9 or LDLRAP1, with 12% of the variants in APOB. These variants showed frequencies in the general population lower than 0.5% and were classified as damaging and/or probably damaging by 3 or more predictors of pathogenicity. The variants c.10030A>G;p.(Lys3344Glu) and c.11401T>A;p.(Ser3801Thr) were characterized. The p.(Lys3344Glu) variant co-segregated with high low-density lipoprotein (LDL)-cholesterol in 2 families studied. LDL isolated from apoB p.(Lys3344Glu) heterozygous patients showed reduced ability to compete with fluorescently-labelled LDL for cellular binding and uptake compared with control LDL and was markedly deficient in supporting U937 cell proliferation. LDL that was carrying apoB p.(Ser3801Thr) was not defective in competing with control LDL for cellular binding and uptake. We conclude that the apoB p.(Lys3344Glu) variant is defective in the interaction with the LDL receptor and is causative of FH, whereas the apoB p.(Ser3801Thr) variant is benign.


Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Apolipoproteins B/genetics , Cholesterol, LDL/genetics , U937 Cells , Hyperlipoproteinemia Type II/genetics
5.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194938, 2023 06.
Article En | MEDLINE | ID: mdl-37086967

Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.


Diabetes Mellitus, Type 2 , MicroRNAs , Oxidoreductases Acting on CH-CH Group Donors , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Cholesterol/metabolism , Homeostasis , Nerve Tissue Proteins/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism
6.
Circulation ; 147(5): 388-408, 2023 01 31.
Article En | MEDLINE | ID: mdl-36416142

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Atherosclerosis/pathology , Hydroxycholesterols/metabolism , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Cholesterol , Inflammation/metabolism , Mice, Knockout
7.
Cell Mol Life Sci ; 79(8): 396, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35789437

In the course of atherogenesis, the spleen plays an important role in the regulation of extramedullary hematopoiesis, and in the control of circulating immune cells, which contributes to plaque progression. Here, we have investigated the role of splenic nucleotide-binding oligomerization domain 1 (NOD1) in the recruitment of circulating immune cells, as well as the involvement of this immune organ in extramedullary hematopoiesis in mice fed on a high-fat high-cholesterol diet (HFD). Under HFD conditions, the absence of NOD1 enhances the mobilization of immune cells, mainly neutrophils, from the bone marrow to the blood. To determine the effect of NOD1-dependent mobilization of immune cells under pro-atherogenic conditions, Apoe-/- and Apoe-/-Nod1-/- mice fed on HFD for 4 weeks were used. Splenic NOD1 from Apoe-/- mice was activated after feeding HFD as inferred by the phosphorylation of the NOD1 downstream targets RIPK2 and TAK1. Moreover, this activation was accompanied by the release of neutrophil extracellular traps (NETs), as determined by the increase in the expression of peptidyl arginine deiminase 4, and the identification of citrullinated histone H3 in this organ. This formation of NETs was significantly reduced in Apoe-/-Nod1-/- mice. Indeed, the presence of Ly6G+ cells and the lipidic content in the spleen of mice deficient in Apoe and Nod1 was reduced when compared to the Apoe-/- counterparts, which suggests that the mobilization and activation of circulating immune cells are altered in the absence of NOD1. Furthermore, confirming previous studies, Apoe-/-Nod1-/- mice showed a reduced atherogenic disease, and diminished recruitment of neutrophils in the spleen, compared to Apoe-/- mice. However, splenic artery ligation reduced the atherogenic burden in Apoe-/- mice an effect that, unexpectedly was lost in Apoe-/-Nod1-/- mice. Together, these results suggest that neutrophil accumulation and activity in the spleen are driven in part by NOD1 activation in mice fed on HFD, contributing in this way to regulating atherogenic progression.


Atherosclerosis , Extracellular Traps , Animals , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Extracellular Traps/metabolism , Mice , Mice, Knockout , Neutrophil Infiltration , Spleen/metabolism
8.
Biomedicines ; 10(6)2022 Jun 03.
Article En | MEDLINE | ID: mdl-35740338

Exosomes/microvesicles originate from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of rottlerin, a polyphenol, on exosome/microvesicle secretion in a model of intracellular lipid trafficking impairment, and elucidated the mechanism of action. In a model of lipid trafficking impairment in C6 glia cells, rottlerin increased ceramide levels, while decreasing hexosylceramide content. This was accompanied by increased exosome/microvesicle secretion, thereby reducing the concentration of lipids in the endolysosomal compartment. The reduction of hexosylceramide levels by rottlerin was attributed to the increase of ß-glucosidase (glucosylceramidase) activity, and the effects of rottlerin were abrogated by ß-glucosidase inhibitors such as isofagomine D-tartrate and AMP-deoxynojirimycin. Moreover, treatment with ML-266, a potent activator of the ß-glucosidase enzyme, recapitulated the effects of rottlerin on the sphingolipid profile and exosome/microvesicle secretion. Finally, inhibition of AMPK (AMP-activated protein kinase) using compound C prevented both exosome/microvesicle secretion and the elimination of endolysosome lipids, which were promoted by rottlerin. The results showed that the decrease in intracellular lipid deposition induced by rottlerin was mediated by ß-glucosidase activation and exosome/microvesicle release via the AMPK pathway. Rottlerin consumption could represent an additional health benefit in lysosomal deposition diseases.

9.
Eur J Nutr ; 61(2): 1043-1056, 2022 Mar.
Article En | MEDLINE | ID: mdl-34716465

PURPOSE: Extracellular RNAs are unstable and rapidly degraded unless protected. Bovine-milk extracellular vesicles (EVs) confer protection to dietary miRNAs, although it remains unclear whether this importantly improves their chances of reaching host target cells to exert biological effects. METHODS: Caco-2, HT-29, Hep-G2 and FHs-74 cell lines were exposed to natural/labelled milk EVs to evaluate cellular uptake. Five frequently reported human milk miRNAs (miR-146b-5p, miR-148a-3p, miR-30a-5p, miR-26a-5p, and miR-22-3p) were loaded into EVs. The intracellular concentration of each miRNA in cells was determined. In addition, an animal study giving an oral dose of loaded EVs in C57BL6/ mice were performed. Gene expression regulation was assessed by microarray analysis. RESULTS: Digestive stability analysis showed high overall degradation of exogenous miRNAs, although EV-protected miRNAs better resisted gastrointestinal digestion compared to free miRNAs (tenfold higher levels). Importantly, orally delivered EV-loaded miRNAs reached host organs, including brain, in mice. However, no biological effect has been identified. CONCLUSION: Milk EVs protect miRNAs from degradation and facilitate cellular uptake. miRNA concentration in EVs from bovine milk might be insufficient to produce gene modulation. Nevertheless, sizable amounts of exogenous miRNAs may be loaded into EVs, and orally delivered EV-loaded miRNAs can reach tissues in vivo, increasing the possibility of exerting biological effects. Further investigation is justified as this could have an impact in the field of nutrition and health (i.e., infant formulas elaboration).


Extracellular Vesicles , MicroRNAs , Animals , Caco-2 Cells , Digestion , Extracellular Vesicles/metabolism , Gene Expression , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Milk, Human/metabolism
10.
Biochem Pharmacol ; 196: 114623, 2022 02.
Article En | MEDLINE | ID: mdl-34052188

The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.


Cell Cycle/physiology , Cholesterol/metabolism , Mevalonic Acid/metabolism , Sterols/metabolism , Terpenes/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology
11.
Biomed Pharmacother ; 141: 111871, 2021 Sep.
Article En | MEDLINE | ID: mdl-34225017

Selective estrogen receptor modulators (SERMs) are nonsteroidal drugs that display an estrogen-agonist or estrogen-antagonist effect depending on the tissue targeted. SERMs have attracted great clinical interest for the treatment of several pathologies, most notably breast cancer and osteoporosis. There is strong evidence that SERMs secondarily affect cholesterol metabolism, although the mechanism has not been fully elucidated. In this study, we analysed the effect of the SERMs tamoxifen, raloxifene, and toremifene on the expression of lipid metabolism genes by microarrays and quantitative PCR in different cell types, and ascertained the main mechanisms involved. The three SERMs increased the expression of sterol regulatory element-binding protein (SREBP) target genes, especially those targeted by SREBP-2. In consonance, SERMs increased SREBP-2 processing. These effects were associated to the interference with intracellular LDL-derived cholesterol trafficking. When the cells were exposed to LDL, but not to cholesterol/methyl-cyclodextrin complexes, the SERM-induced increases in gene expression were synergistic with those induced by lovastatin. Furthermore, the SERMs reduced the stimulation of the transcriptional activity of the liver X receptor (LXR) by exogenous cholesterol. However, their impact on the expression of the LXR canonical target ABCA1 in the presence of LDL was cell-type dependent. These actions of SERMs were independent of estrogen receptors. We conclude that, by inhibiting the intracellular trafficking of LDL-derived cholesterol, SERMs promote the activation of SREBP-2 and prevent the activation of LXR, two master regulators of cellular cholesterol metabolism. This study highlights the impact of SERMs on lipid homeostasis regulation beyond their actions as estrogen receptor modulators.


Cholesterol/metabolism , Homeostasis/drug effects , Liver X Receptors/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Sterol Regulatory Element Binding Protein 2/metabolism , Cholesterol, LDL/metabolism , Hep G2 Cells , Homeostasis/physiology , Humans , Liver X Receptors/antagonists & inhibitors , MCF-7 Cells
12.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article En | MEDLINE | ID: mdl-33920193

Atypical or second-generation antipsychotics are used in the treatment of psychosis and behavioral problems in older persons with dementia. However, these pharmaceutical drugs are associated with an increased risk of stroke in such patients. In this study, we evaluated the effects of risperidone treatment on phospholipid and sphingolipid composition and lipid raft function in peripheral blood mononuclear cells (PBMCs) of older patients (mean age >88 years). The results showed that the levels of dihydroceramides, very-long-chain ceramides, and lysophosphatidylcholines decreased in PBMCs of the risperidone-treated group compared with untreated controls. These findings were confirmed by in vitro assays using human THP-1 monocytes. The reduction in the levels of very-long-chain ceramides and dihydroceramides could be due to the decrease in the expression of fatty acid elongase 3, as observed in THP-1 monocytes. Moreover, risperidone disrupted lipid raft domains in the plasma membrane of PBMCs. These results indicated that risperidone alters phospholipid and sphingolipid composition and lipid raft domains in PBMCs of older patients, potentially affecting multiple signaling pathways associated with these membrane domains.


Ceramides/metabolism , Lipid Metabolism/drug effects , Psychotic Disorders/drug therapy , Aged , Aged, 80 and over , Antipsychotic Agents/pharmacology , Cell Membrane/genetics , Cell Membrane/metabolism , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lipid Metabolism/genetics , Lysophospholipids/genetics , Male , Olanzapine/pharmacology , Psychotic Disorders/blood , Psychotic Disorders/pathology , Risperidone/pharmacology , Sphingolipids/genetics
14.
Cardiovasc Diabetol ; 20(1): 72, 2021 03 25.
Article En | MEDLINE | ID: mdl-33766036

BACKGROUND: Peripheral artery disease (PAD) is recognized as a significant predictor of mortality and adverse cardiovascular outcomes in patients with coronary heart disease (CHD). In fact, coexisting PAD and CHD is strongly associated with a greater coronary event recurrence compared with either one of them alone. High-density lipoprotein (HDL)-mediated cholesterol efflux capacity (CEC) is found to be inversely associated with an increased risk of incident CHD. However, this association is not established in patients with PAD in the context of secondary prevention. In this sense, our main aim was to evaluate the association between CEC and PAD in patients with CHD and whether the concurrent presence of PAD and T2DM influences this association. METHODS: CHD patients (n = 1002) from the CORDIOPREV study were classified according to the presence or absence of PAD (ankle-brachial index, ABI ≤ 0.9 and ABI > 0.9 and < 1.4, respectively) and T2DM status. CEC was quantified by incubation of cholesterol-loaded THP-1 cells with the participants' apoB-depleted plasma was performed. RESULTS: The presence of PAD determined low CEC in non-T2DM and newly-diagnosed T2DM patients. Coexisting PAD and newly-diagnosed T2DM provided and additive effect providing an impaired CEC compared to non-T2DM patients with PAD. In established T2DM patients, the presence of PAD did not determine differences in CEC, compared to those without PAD, which may be restored by glucose-lowering treatment. CONCLUSIONS: Our findings suggest an inverse relationship between CEC and PAD in CHD patients. These results support the importance of identifying underlying mechanisms of PAD, in the context of secondary prevention, that provide potential therapeutic targets, that is the case of CEC, and establishing strategies to prevent or reduce the high risk of cardiovascular events of these patients. Trial registration https://clinicaltrials.gov/ct2/show/NCT00924937 . Unique Identifier: NCT00924937.


Cholesterol/blood , Coronary Disease/blood , Diabetes Mellitus, Type 2/blood , Macrophages/metabolism , Peripheral Arterial Disease/blood , Adult , Aged , Apolipoprotein B-100/blood , Biomarkers/blood , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Middle Aged , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Randomized Controlled Trials as Topic , Spain/epidemiology , THP-1 Cells , Young Adult
15.
Semin Cancer Biol ; 73: 101-115, 2021 08.
Article En | MEDLINE | ID: mdl-32931953

Selective estrogen receptor modulators (SERMs) are a class of compounds that bind to estrogen receptors (ERs) and possess estrogen agonist or antagonist actions in different tissues. As such, they are widely used drugs. For instance, tamoxifen, the most prescribed SERM, is used to treat ERα-positive breast cancer. Aside from their therapeutic targets, SERMs have the capacity to broadly affect cellular cholesterol metabolism and handling, mainly through ER-independent mechanisms. Cholesterol metabolism reprogramming is crucial to meet the needs of cancer cells, and different key processes involved in cholesterol homeostasis have been associated with cancer progression. Therefore, the effects of SERMs on cholesterol homeostasis may be relevant to carcinogenesis, either by contributing to the anticancer efficacy of these compounds or, conversely, by promoting resistance to treatment. Understanding these aspects of SERMs actions could help to design more efficacious therapies. Herein we review the effects of SERMs on cellular cholesterol metabolism and handling and discuss their potential in anticancer pharmacology.


Cholesterol/metabolism , Lipid Metabolism/drug effects , Neoplasms , Selective Estrogen Receptor Modulators/pharmacology , Animals , Humans , Lipid Metabolism/physiology , Neoplasms/drug therapy , Neoplasms/metabolism
16.
Sci Rep ; 10(1): 18921, 2020 11 03.
Article En | MEDLINE | ID: mdl-33144601

The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


Dietary Fats/pharmacology , Intestines/drug effects , MicroRNAs/genetics , Organoids/drug effects , Adult Stem Cells/chemistry , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Caco-2 Cells , Cell Differentiation/drug effects , Cells, Cultured , DEAD-box RNA Helicases/genetics , Female , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Intestines/chemistry , Intestines/cytology , Lipid Metabolism , Male , Mice , Organoids/chemistry , Organoids/cytology , Ribonuclease III/genetics , Sequence Analysis, RNA , Sex Characteristics , Time Factors
17.
Medicine (Baltimore) ; 99(34): e21754, 2020 Aug 21.
Article En | MEDLINE | ID: mdl-32846800

RATIONALE: Proprotein convertase subtilisin/kexin 9 or PCSK9 is a protein whose main function is to regulate the number of low-density lipoprotein receptors (LDLR) present on the cell surface. Loss-of-function mutations in PCSK9 have been related to low LDL-cholesterol levels and a decrease in the risk of cardiovascular events. PATIENT CONCERNS: We present the case of a 27-year-old woman, offspring of a patient with familial homozygous hypercholesterolemia, who presented with mild-moderate hypercholesterolemia. DIAGNOSIS: Genetic analysis was performed by next generation sequencing using a customized panel of 198 genes. Sanger sequencing was used to confirm the presence of the variants of interest. The genetic analysis showed a pathogenic heterozygous mutation in LDLR [exon 6:c.902A>G:p(Asp301Gly)], as well as a loss-of-function heterozygous variant in PCSK9 [exon1:c.137 G>T:p.(Arg46Leu)]. The genetic analysis of the index case's mother revealed compound heterozygosity for 2 different mutations in LDLR [c.902A>G:p.(Asp301Gly); c.1646G>T:p.(Gly549Val)] in exon 6 and in exon 11, respectively, and the same loss-of-function variant in PCSK9 that had been found in her daughter [(PCSK9:exon1:c.137G>T:p.(Arg46Leu)]. The maternal grandfather of the index case presented the same genetic variants as his granddaughter. INTERVENTIONS: The index case did not receive any specific treatment for hypercholesterolemia. The loss-of-function variant in PCSK9 protected her from higher LDL-cholesterol levels, provided she kept partial activity of the LDLR. In her mother, instead, a PCSK9 inhibitor was tried but failed to achieve lipid control. The reason for this may be the complete absence in LDL receptor activity. LDL apheresis was started afterwards, resulting in adequate lipid level control. OUTCOMES: To the date, the index case has achieved to maintain adequate total and LDL-cholesterol levels without any other intervention. She has had no known cardiovascular complication. LESSONS: Loss-of-function mutations in PCSK9 could protect from developing more severe forms of hypercholesterolemia. The finding of these mutations (LDLR-PCSK9) in three consecutive generations could imply an adaptive mechanism against the development of hypercholesterolemia.


Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics , Adult , Cholesterol, LDL/blood , Female , Humans
18.
Circ Res ; 127(6): 778-792, 2020 08 28.
Article En | MEDLINE | ID: mdl-32495699

RATIONALE: The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS: Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.


Cholesterol, HDL/blood , Cholesterol, LDL/blood , Hyperlipoproteinemia Type II/blood , Liver/metabolism , Macrophages/metabolism , Receptors, LDL/metabolism , Animals , Apolipoprotein B-100/blood , Apolipoprotein B-100/genetics , Biological Transport , Cell Line , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Disease Models, Animal , Feces/chemistry , Humans , Hyperlipoproteinemia Type II/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency , Receptors, LDL/genetics , Scavenger Receptors, Class B/metabolism
19.
J Clin Med ; 8(11)2019 Nov 03.
Article En | MEDLINE | ID: mdl-31684177

Renal complications are the major cause of morbidity and mortality in patients with familial lecithin-cholesterol acyltransferase (LCAT) deficiency (FLD). We report three FLD patients, two of them siblings-only one of whom developed renal disease-and the third case being a young man with early renal disease. The aim of this study was to analyze the clinical characteristics and possible mechanisms associated with renal disease in these patients. Plasma lipid levels, LCAT activity, lipoprotein particle profile by NMR and FPLC, free and esterified cholesterol, presence of lipoprotein X (LpX) and DNA sequencing in the three FLD patients have been determined. The three cases presented clinical characteristics of FLD, although only one of the siblings developed renal disease, at 45 years of age, while the other patient developed the disease in his youth. Genetic analysis revealed new missense homozygous mutations, p.(Ile202Thr) in both siblings and p.(Arg171Glu) in the other patient. Lipoprotein particle analysis showed that the two patients with renal disease presented higher numbers of small very low-density lipoprotein (VLDL) and a higher concentration of triglycerides in VLDL. This study reports three new cases of LCAT deficiency, not previously described. Renal disease is not only dependent on LCAT deficiency, and could be due to the presence of VLDL particles, which are rich in triglycerides, free cholesterol and LpX.

20.
Atherosclerosis ; 284: 223-229, 2019 05.
Article En | MEDLINE | ID: mdl-30777337

BACKGROUND AND AIMS: Autosomal recessive hypercholesterolemia (ARH) is a rare disorder caused by mutations in LDLRAP1, which impairs internalization of hepatic LDL receptor (LDLR). ARH patients respond relatively well to statins or the combination of statins and Ezetimibe, but scarce and variable data on treatment with PCSK9 inhibitors is available. We aimed to identify and characterize the defect in a hypercholesterolemic patient with premature cardiovascular disease and determine the response to lipid-lowering treatment. METHODS AND RESULTS: Gene sequencing revealed a homozygous c.1A > G:p.? variant in LDLRAP1. Primary lymphocytes were isolated from the ARH patient, one control and two LDLR-defective subjects, one LDLR:p.(Cys352Ser) heterozygote and one LDLR:p.(Asn825Lys) homozygote. The patient had undetectable full-length ARH protein by Western blotting, but expressed a lower-than-normal molecular weight peptide. LDLR activity was measured by flow cytometry, which showed that LDL binding and uptake were reduced in lymphocytes from the ARH patient as compared to control lymphocytes, but were slightly higher than in those from the LDLR:p.(Cys352Ser) heterozygote. Despite the analogous internalization defect predicted in ARH and homozygous LDLR:p.(Asn825Lys) lymphocytes, LDL uptake was higher in the former than in the latter. LDL-cholesterol levels were markedly reduced by the successive therapy with Atorvastatin and Atorvastatin plus Ezetimibe, and the addition of Evolocumab biweekly decreased LDL-cholesterol by a further 39%. CONCLUSIONS: The LDLRAP1:c.1A > G variant is associated with the appearance of an N-terminal truncated ARH protein and to reduced, although still significant, LDLR activity in lymphocytes. Residual LDLR activity may be relevant for the substantial response of the patient to Evolocumab.


Adaptor Proteins, Signal Transducing/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Anticholesteremic Agents/therapeutic use , Hypercholesterolemia/drug therapy , Hypercholesterolemia/genetics , Mutation , PCSK9 Inhibitors , Humans , Male , Middle Aged , Hyperlipoproteinemia Type III
...