Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Int J Mol Sci ; 24(9)2023 May 03.
Article En | MEDLINE | ID: mdl-37175911

Mesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients. Parvovirus B19V (B19V) is a common human pathogen that infects bone marrow erythroid progenitor cells, leading to transient or persistent anemia. Characteristics of B19V include the ability to cross the placenta, infecting the fetus, and to persist in several tissues. We thus isolated MSCs from bone marrow (BM-MSCs) and fetal membrane (FM-MSCs) to investigate their permissiveness to B19V infection. The results suggest that both BM- and FM- MSCs can be infected by B19V and, while not able to support viral replication, allow persistence over time in the infected cultures. Future studies are needed to understand the potential role of MSCs in B19V transmission and the conditions that can favor a potential reactivation of the virus.


Erythema Infectiosum , Mesenchymal Stem Cells , Parvoviridae Infections , Parvovirus B19, Human , Pregnancy , Female , Humans , Parvovirus B19, Human/genetics , Virus Replication/physiology , DNA, Viral
2.
Clin Infect Dis ; 76(10): 1761-1767, 2023 05 24.
Article En | MEDLINE | ID: mdl-36636955

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in solid organ transplant (SOT) recipients is associated with poorer antibody response (AbR) compared with non-SOT recipients. However, its impact on the risk of breakthrough infection (BI) has yet to be assessed. METHODS: Single-center prospective longitudinal cohort study enrolling adult SOT recipients who received SARS-CoV-2 vaccination during a 1-year period (February 2021 - January 2022), end of follow-up April 2022. Patients were tested for AbR at multiple time points. The primary end-point was BI (laboratory-confirmed SARS-CoV-2 infection ≥14 days after the second dose). Immunization (positive AbR) was considered an intermediate state between vaccination and BI. Probabilities of being in vaccination, immunization, and BI states were obtained for each type of graft and vaccination sequence using multistate survival analysis. Then, multivariable logistic regression was performed to analyze the risk of BI related to AbR levels. RESULTS: 614 SOT (275 kidney, 163 liver, 137 heart, 39 lung) recipients were included. Most patients (84.7%) received 3 vaccine doses. The first 2 consisted of BNT162b2 and mRNA-1273 in 73.5% and 26.5% of cases, respectively. For the third dose, mRNA-1273 was administered in 59.8% of patients. Overall, 75.4% of patients reached immunization and 18.4% developed BI. Heart transplant recipients showed the lowest probability of immunization (0.418) and the highest of BI (0.323); all mRNA-1273 vaccine sequences showed the highest probability of immunization (0.732) and the lowest of BI (0.098). Risk of BI was higher for non-high-level AbR, younger age, and shorter time from transplant. CONCLUSIONS: SOT patients with non-high-level AbR and shorter time from transplantation and heart recipients are at highest risk of BI.


COVID-19 Vaccines , COVID-19 , Organ Transplantation , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Breakthrough Infections , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunity , Longitudinal Studies , Organ Transplantation/adverse effects , Prospective Studies , SARS-CoV-2 , Vaccines
3.
Microorganisms ; 10(5)2022 May 12.
Article En | MEDLINE | ID: mdl-35630462

Previous studies assessing the antibody response (AbR) to mRNA COVID-19 vaccines in solid organ transplant (SOT) recipients are limited by short follow-up, hampering the analysis of AbR kinetics. We present the ORCHESTRA SOT recipients cohort assessed for AbR at first dose (t0), second dose (t1), and within 3 ± 1 month (t2) after the first dose. We analyzed 1062 SOT patients (kidney, 63.7%; liver, 17.4%; heart, 16.7%; and lung, 2.5%) and 5045 health care workers (HCWs). The AbR rates in the SOTs and HCWs were 52.3% and 99.4%. The antibody levels were significantly higher in the HCWs than in the SOTs (p < 0.001). The kinetics showed an increase (p < 0.001) in antibody levels up to 76 days and a non-significant decrease after 118 days in the SOT recipients versus a decrease up to 76 days (p = 0.02) and a less pronounced decrease between 76 and 118 days (p = 0.04) in the HCWs. Upon multivariable analysis, liver transplant, ≥3 years from SOT, mRNA-1273, azathioprine, and longer time from t0 were associated with a positive AbR at t2. Older age, other comorbidities, mycophenolate, steroids, and impaired graft function were associated with lower AbR probability. Our results may be useful to optimize strategies of immune monitoring after COVID-19 vaccination and indications regarding timing for booster dosages calibrated on SOT patients' characteristics.

4.
J Neuropsychol ; 12(3): 463-470, 2018 09.
Article En | MEDLINE | ID: mdl-28891265

In this study, we assessed the impact of multiple sclerosis (MS) on bodily self-consciousness (BSC) using the Rubber Hand Illusion. Patients with MS showed a dissociation between body ownership and self-location: they did report an explicit ownership of the rubber hand, but they did not point towards it, showing a defective ability of localizing body parts in space. This evidence indicates that MS may affect selective components of BSC, whose impairment may contribute to, and even worsen, the functional disability of MS.


Consciousness/physiology , Illusions , Multiple Sclerosis/physiopathology , Multiple Sclerosis/psychology , Visual Perception/physiology , Adult , Female , Humans , Male , Middle Aged , Photic Stimulation , Statistics, Nonparametric
5.
Front Psychol ; 9: 2507, 2018.
Article En | MEDLINE | ID: mdl-30618937

In this study we investigated, both in childhood and adulthood, the role of action in promoting and shaping the sense of body ownership, which is traditionally viewed as dependent on multisensory integration. By means of a novel action-based version of the rubber hand illusion (RHI), in which participants could actively self-stroke the rubber hand, with (Version 1) or without visual feedback (Version 2) of their own actions, we showed that self-generated actions promote the emergence of a sense of ownership over the rubber hand in children, while it interferes with the embodiment of the rubber hand in adults. When the movement is missing (Version 3, i.e., mere view of the rubber hand being stroked concurrently with one's own hand), the pattern of results is reversed, with adults showing embodiment of the rubber hand, but children lacking to do so. Our novel findings reveal a dynamic and plastic contribution of the motor system to the emergence of a coherent bodily self, suggesting that the development of the sense of body ownership is shaped by motor experience, rather than being purely sensory.

6.
Biol Proced Online ; 12(1): 9023, 2010 Feb 06.
Article En | MEDLINE | ID: mdl-21406067

The aim of this study was to compare different cell sources and culture conditions to obtain endothelial progenitor cells (EPCs) with predictable antigen pattern, proliferation potential and in vitro vasculogenesis. Pig mononuclear cells were isolated from blood (PBMCs) and bone marrow (BMMCs). Mesenchymal stem cells (MSCs) were also derived from pig bone marrow. Cells were cultured on fibronectin in the presence of a high concentration of VEGF and low IGF-1 and FGF-2 levels, or on gelatin with a lower amount of VEGF and higher IGF-1 and FGF-2 concentrations. Endothelial commitment was relieved in almost all PBMCs and BMMCs irrespective of the protocol used, whilst MSCs did not express a reliable pattern of EPC markers under these conditions. BMMCs were more prone to expand on gelatin and showed a better viability than PBMCs. Moreover, about 90% of the BMMCs pre-cultured on gelatin could adhere to a hyaluronan-based scaffold and proliferate on it up to 3 days. Pre-treatment of BMMCs on fibronectin generated well-shaped tubular structures on Matrigel, whilst BMMCs exposed to the gelatin culture condition were less prone to form vessel-like structures. MSCs formed rough tubule-like structures, irrespective of the differentiating condition used. In a relative short time, pig BMMCs could be expanded on gelatin better than PBMCs, in the presence of a low amount of VEGF. BMMCs could better specialize for capillary formation in the presence of fibronectin and an elevated concentration of VEGF, whilst pig MSCs anyway showed a limited capability to differentiate into the endothelial cell lineage.

7.
Tissue Eng Part A ; 15(9): 2751-62, 2009 Sep.
Article En | MEDLINE | ID: mdl-19438299

Neovascularization can be improved using polymer scaffolds supporting endothelial progenitor cells (EPCs). The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured in a hyaluronan-based non-woven mesh (HYAFF-11). eEPCs were seeded on HYAFF-11 at the density of 1 x 10(6)/cm(2) and cultured with endothelial differentiating factors for 3 weeks. After 24 h, nearly 90% of EPCs were adherent. Cell viability, evaluated by methyltetrazolium test, was greater in HYAFF-11 than on the most commonly used fibronectin-coated dishes, even if a progressive decline in viability was observed starting from approximately the second week of culture. eEPCs easily migrated to and aggregated on the scaffold. Evidence of active protein synthesis and features of endothelial differentiation, including cellular transcytotic channels and micropinocytotic vesicles, was revealed using electron microscopy, immunofluorescence, and reverse transcriptase polymerase chain reaction analysis. eEPCs cultured in the scaffold also showed a certain angiogenic activity, as demonstrated by hepatocyte growth factor transcription and vascular endothelial growth factor secretion. In conclusion, eEPCs can migrate and adhere inside HYAFF-11, maintain their pre-endothelial phenotype, and express angiogenic factors, especially within the first week of growth. These results indicate that non-woven HYAFF-11 could be a promising candidate as a vehicle for eEPCs for regenerative medicine applications.


Endothelial Cells/cytology , Endothelial Cells/drug effects , Hyaluronic Acid/pharmacology , Polymers/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Tissue Scaffolds/chemistry , Biomarkers/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/ultrastructure , Fluorescent Antibody Technique , Humans , Microscopy, Electron, Scanning , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/ultrastructure , Vascular Endothelial Growth Factor A/metabolism
8.
J Cell Biochem ; 103(4): 1046-52, 2008 Mar 01.
Article En | MEDLINE | ID: mdl-18240140

The efficiency of in vitro mesenchymal stem cell (MSC) differentiation into the myocardial lineage is generally poor. In order to improve cardiac commitment, bone marrow GFP+MSCs obtained from transgenic rats were cultured with adult wild type rat cardiomyocytes for 5 days in the presence of difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis and cell proliferation. The percentage of GFP+MSCs showing cardiac myofibril proteins (cMLC2, cTnI) was about threefold higher after DFMO addition (3%) relative to the untreated control (1%). Another set of experiments was performed with cardiomyocytes incubated for 1 day in the absence of glucose and serum and under hypoxic conditions (pO2 < 1%), in order to simulate severe ischemia. The percentage of cardiac committed GFP+MSCs was about 5% when cultured with the hypoxic/starved cardiomyocytes and further increased to 7% after DFMO addition. The contemporary presence of putrescine in DFMO-treated cells markedly blunted differentiation, while the cytostatic mitomycin C was not able to induce cardiac commitment. The involvement of histone acetylation in DFMO-induced differentiation was evidenced by the strong attenuation of cardiac commitment exerted by anacardic acid, an inhibitor of histone acetylase. Moreover, the percentage of acetylated histone H3 significantly increased in bone marrow MSCs obtained from wild type rats and treated with DFMO. These results suggest that polyamine depletion can represent a useful strategy to improve MSC differentiation into the cardiac lineage, especially in the presence of cardiomyocytes damaged by an ischemic environment.


Bone Marrow Cells/cytology , Eflornithine/pharmacology , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Acetylation , Anacardic Acids/pharmacology , Animals , Animals, Genetically Modified , Bone Marrow Cells/physiology , Cardiac Myosins/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Hypoxia , Cell Lineage , Cell Proliferation , Cells, Cultured , Coculture Techniques , Histones/metabolism , Mesenchymal Stem Cells/physiology , Mitomycin/pharmacology , Myocytes, Cardiac/physiology , Myosin Light Chains/metabolism , Polyamines/pharmacology , Rats
9.
J Cell Biochem ; 102(4): 992-1001, 2007 Nov 01.
Article En | MEDLINE | ID: mdl-17492662

Cord blood and peripheral-adult blood were compared as different sources of early endothelial precursor cells (eEPCs). Total mononuclear cells (MNCs) were obtained from both blood types and committed to eEPCs by exposure to fibronectin, VEGF, IGF-I, and bFGF. Under this condition, MNCs seeded at the density of 3 x 10(5) cells/cm(2) assumed a spindle shape, which was indicative of developing eEPCs, and expanded in a similar manner irrespective to the blood sources. Ulex europaeus agglutinin (UEA-1) and acetylated low density lipoprotein (acLDL) double staining was present in 90% in both peripheral- and cord-blood eEPCs after 2-week expansion. Also, the ability of eEPCs to form tubule-like structures in Matrigel was independent of their blood source, but dependent on the presence of human umbilical vein endothelial cells (HUVECs). eNOS and nNOS were not detectable by Western blotting in both peripheral and cord-blood eEPCs upon 3 weeks and their mRNA levels were lower than 2% relative to those present in HUVECs. On the contrary, iNOS protein was detectable in peripheral-blood eEPCs, but not in cord-blood eEPCs and HUVECs, as well as iNOS mRNA was more concentrated in peripheral-blood eEPCs than in cord-blood eEPCs and HUVECs. These data suggest that: (a) peripheral and cord blood can be considered comparable sources of eEPCs when they are expanded and differentiated in a short-term period; (b) the extremely low expression of constitutive NOS isoforms in the eEPCs of both blood types should markedly reduce their ability to regulate NO-dependent vasorelaxation; (c) the presence of iNOS in peripheral-blood eEPCs could improve the process of vasculogenesis.


Endothelial Cells/enzymology , Gene Expression Regulation , Nitric Oxide Synthase/analysis , Stem Cells/enzymology , Blood Cells/cytology , Cell Culture Techniques , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Fetal Blood/cytology , Humans , Neovascularization, Physiologic , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III/analysis , Nitric Oxide Synthase Type III/genetics , Protein Isoforms , RNA, Messenger/analysis , Stem Cells/cytology , Umbilical Veins/cytology , Vasodilation
10.
Exp Gerontol ; 41(8): 800-4, 2006 Aug.
Article En | MEDLINE | ID: mdl-16806781

The survival of mesenchymal stem cells (MSCs) to tumor necrosis factor alpha (TNFalpha) stimulation was evaluated after a long-term antioxidant treatment, or caloric restriction, in aged rats. MSCs were isolated from bone marrow of 30-month-old rats which orally received N-acetylcysteine in the last 18 months. The necrotic cell death-induced in vitro by TNFalpha, determined by trypan blue exclusion, was markedly attenuated in MSCs obtained from treated vs. control aged rats (percent mean+/-SEM: 10.9+/-2.17 vs. 17.8+/-0.53; p<0.05). Also, the proliferation rate of MSCs from control, but not N-acetylcysteine-treated, aged rats evaluated up to 2 weeks was significantly higher than that of MSCs from younger (4-month-old) rats. No significant effect was observed relative to the parameters investigated when the aged rats were previously subjected to a hypocaloric diet for 18 months. In conclusion, a prolonged supplementation with N-acetylcysteine in rats can increase resistance to necrotic death of MSCs and may also counteract an excessive rate of MSC proliferation.


Acetylcysteine/pharmacology , Aging/pathology , Caloric Restriction , Mesenchymal Stem Cells/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Drug Administration Schedule , Male , Mesenchymal Stem Cells/pathology , Rats , Rats, Wistar
11.
Cell Biochem Funct ; 24(6): 511-8, 2006.
Article En | MEDLINE | ID: mdl-16245370

The aim of this study was to evaluate the role of mitochondria in the recovery of cardiac energetics induced by ischaemic preconditioning at reperfusion. Isolated rat hearts were aerobically perfused (control), subjected to global ischaemia and reperfusion (reperfusion), or subjected to 3 brief cycles of ischaemia/reperfusion and then to the protocol of reperfusion (preconditioning). At the end of the perfusion, antimycin A was delivered to the heart for 25 min, to inhibit mitochondrial respiration and stimulate glycolysis. The increased amount of lactate released in the coronary effluent was correlated with the number of viable cells producing this end-product of glycolysis. Preconditioned hearts released 18% more lactate than reperfused hearts (p < 0.05). This result indicates that preconditioning partially preserved cell viability, as was also evidenced by the MTT assay performed on cardiac biopsies. The difference between antimycin A-stimulated and basal lactate concentration, representing the contribution of mitochondria to the overall energetics of cardiac tissue, was also 18% more elevated in the preconditioned hearts than in the reperfused hearts (p < 0.01). The study of the respiratory function of mitochondria isolated at the end of perfusion, showed that preconditioning did not improve the oxygen-dependent production of ATP (state 3 respiration, ADP/O). On the contrary, state 4 respiration, which is related to proton leakage, was 35.0% lower in the preconditioned group than reperfusion group (p < 0.05). Thus, preconditioning ameliorates cardiac energetics by preserving cell death, but without affecting mitochondrial oxidative phosphorylation. Mitochondria can contribute to cell survival by the attenuation of proton leak from inner membrane.


Intracellular Membranes/metabolism , Ischemic Preconditioning , Mitochondria/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Oxidative Phosphorylation , Animals , Biological Transport, Active , Cell Respiration , Cell Survival , Lactic Acid/biosynthesis , Male , Oxidation-Reduction , Protons , Rats , Rats, Wistar
12.
Mol Cell Biochem ; 258(1-2): 91-7, 2004 Mar.
Article En | MEDLINE | ID: mdl-15030173

This work aims at exploring changes in cellular energetics by exploiting the Pasteur effect. We assumed that lactate overproduction arising from antimycin A-induced inhibition of mitochondrial respiration (delta-lactate = stimulated [lactate] -basal [lactate]) is indicative of the energy provided aerobically by the cell. Rat embryonal cardiomyocytes (H9c2), incubated with 2 micromol/L antimycin A, increased about 6 fold their lactate production in a manner linear with time and cell number. Antimycin A was also delivered to Langendorff-perfused rat hearts under control aerobic conditions or after 20 min-ischemia and 30 min-reperfusion. The test started at the end of each perfusion and lactate was measured into perfusate collected for further 25 min. A cardioplegic solution was also delivered during the test to exclude that lactate production was influenced by cardiac contraction. Control delta-lactate was 20.9 +/- 2.31 (S.E.M.) microg/mL and markedly decreased after reperfusion (7.66 +/- 0.51, p < 0.001), showing that energy production was impaired of about 70%. The determination of oxygen consumption by mitochondria isolated from reperfused hearts also suggested that the damage to the respiratory chain was similar to that evaluated by lactate overproduction (Respiratory Control Index: 75% lower than control, p < 0.001). Moreover, when delta-lactate was referred to the estimated cells which remained viable at the end of reperfusion (49.9%), it was 25% lower than control (p < 0.05). Therefore, we proposed this test as a tool for quantifying both physiological and pathological energetic modifications in living intact cardiomyocytes and in isolated and perfused hearts.


Anti-Bacterial Agents/pharmacology , Antimycin A/pharmacology , Energy Metabolism/drug effects , Lactic Acid/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Cell Line , In Vitro Techniques , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/cytology , Perfusion , Rats , Rats, Wistar
13.
Life Sci ; 74(9): 1127-37, 2004 Jan 16.
Article En | MEDLINE | ID: mdl-14687653

Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.


Ischemic Preconditioning, Myocardial , Myocardial Ischemia/physiopathology , Myocardium/enzymology , Nitric Oxide Synthase/metabolism , Animals , Blotting, Western , Creatine Kinase/metabolism , Myocardial Contraction/physiology , Myocardial Ischemia/enzymology , Nitric Oxide Synthase Type III , Rats
...