Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.231
1.
BMC Public Health ; 24(1): 1531, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38844910

BACKGROUND: To investigate the changes in the unhealthy eye-related behaviors of junior middle school students during the COVID-19 pandemic and the double reduction policy and its relationship with myopia. METHODS: Data were obtained from the 2019-2022 Tianjin Children and Youth Myopia, Common Diseases and Health Influencing Factors Survey. Latent profile analysis (LPA) and a generalized linear model (GLM) were applied to analyze the effect of eye-related behavior classes on myopia. RESULTS: A total of 2508 junior middle school students were included. The types of eye-related behavior were categorized into the medium-healthy behavior group, heavy academic burden and near-eye behavior group, insufficient lighting group and high-healthy behavior group. Students with heavy academic burdens and near-eye behavior were more likely to develop myopia than were those in the high-healthy group (OR = 1.466, 95% CI = 1.203-1.787; P < 0.001). CONCLUSIONS: The dual reduction policy has a positive effect on improving unhealthy eye-related behaviors, and the prevention and control of myopia through the use of different combinations of eye-related behaviors are heterogeneous among junior middle school students. In the post-COVID-19 period, we should continue to implement a double reduction policy and formulate targeted eye-related behavior strategies to provide an important reference for the prevention and control of myopia among children and adolescents during public health emergencies in the future.


COVID-19 , Myopia , Students , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/psychology , Myopia/epidemiology , Myopia/psychology , Myopia/prevention & control , Male , Female , Adolescent , Child , Students/psychology , Students/statistics & numerical data , China/epidemiology , Health Behavior , Pandemics , Schools , Surveys and Questionnaires
2.
Front Pharmacol ; 15: 1361501, 2024.
Article En | MEDLINE | ID: mdl-38698820

Background: Bismuth subsalicylate (BSS), probiotics, rifaximin, and vaccines have been proposed as preventive modalities for patients with travelers' diarrhea (TD), but their comparative effectiveness for prevention has rarely been studied. We aimed to perform a systematic review and network meta-analysis to test whether one of these modalities is more effective than the others in reducing the incidence of TD. Methods: We searched Pubmed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, and clinical registries from inception of the databases through 18 November 2023, without language restriction, for randomized controlled trials (RCTs) evaluating the efficacy of BSS, probiotics, rifaximin, and vaccines in preventing TD. The primary outcome was the incidence of TD and the safety outcome was the incidence of adverse events. The relative ratio (RR) was used to assess the effect of the modalities, and RR estimates between any two of the modalities were calculated and pooled using a frequentist network meta-analysis model. Results: Thirty-one studies (recruiting 10,879 participants) were included in the analysis. Sixteen were judged to have a low risk of bias. In the aggregate analysis, BSS and rifaximin were more effective than placebo and other treatment modalities, which was further confirmed in the individual analysis. The comparison between rifaximin and placebo achieved high confidence, while the comparisons between BSS and placebo, ETEC and probiotics, and rifaximin and vaccines achieved moderate confidence. BSS had a higher rate of adverse events compared with other treatments. Conclusion: Rifaximin had a relative lower TD incidence and lower adverse event rate, and the evidence was with moderate confidence. Systematic Review Registration: https://osf.io/dxab6, identifier.

3.
Article En | MEDLINE | ID: mdl-38706359

BACKGROUND: ChangPu YuJin Tang (CPYJT) is a Chinese herbal formula that has been shown to be an effective therapeutic strategy for pediatric patients with Tourette Syndrome (TS). Using an integrated strategy of network pharmacology and animal model, the aim of this study was to investigate the mechanism of CPYJT in the treatment of TS. METHODS: Compound libraries of CPYJT were established using databases, such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The TCMSP database and Swiss Target Prediction database were used to predict the targets. The above results were constructed into a CPYJT-Drug-Component-Target network. Moreover, TS targets were predicted using GeneCards and other databases. The targets corresponding to the potential ingredients in CPYJT and the targets corresponding to TS were taken as the intersections to construct the CPYJT-TS network. The target network was analysed by PPI using the string database. GO and KEGG enrichment analyses were performed on the target network. The whole process was performed using Cytoscape 3.7.2 to make visual network diagrams of the results. CPYJT was characterised by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS). Transmission Electron Microscopy (TEM) was used to observe the structural changes of CPYJT on the neuronal cells of the IDPN model rats. RT-PCR and Western Blot were used to analyse the changes in the mRNA and protein expression levels of BDNF, TrkB, PI3K, and AKT in the cortex, striatum, and thalamus brain regions after CPYJT administration in IDPN model rats. RESULTS: Network pharmacology and UHPLC-MS studies revealed that CPYJT acted on the TS through multiple neurotransmitters and the BDNF/TrkB and PI3K/AKT signalling pathways. CPYJT ameliorated neurocellular structural damage in the cortex, striatum, and thalamus of TS model rats. Additionally, CPYJT up-regulated the levels of BDNF, TrkB, PI3k, and AKT in the cortex, striatum, and thalamus of TS model rats. CONCLUSION: It was found that CPYJT protected neuronal cells from structural damage in multiple brain regions and affected the expression levels of BDNF, TrkB, PI3K, and Akt in the cortex, striatum, and thalamus during TS treatment.

4.
Front Microbiol ; 15: 1358222, 2024.
Article En | MEDLINE | ID: mdl-38784797

Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The ßNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.

5.
EuroIntervention ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38742581

BACKGROUND: The treatment of in-stent restenosis (ISR) after drug-eluting stent (DES) implantation remains challenging in current clinical practice. AIMS: The study was conducted to investigate a novel biolimus-coated balloon (BCB) for the treatment of coronary DES-ISR compared with the best-investigated paclitaxel-coated balloon (PCB). METHODS: This was a prospective, multicentre, randomised, non-inferiority trial comparing a novel BCB with a clinically proven PCB for coronary DES-ISR. The primary endpoint was in-segment late lumen loss (LLL) at 9 months assessed by an independent core laboratory. Baseline and follow-up optical coherence tomography were performed in a prespecified subgroup of patients. RESULTS: A total of 280 patients at 17 centres were randomised to treatment with a BCB (n=140) versus a PCB (n=140). At 9 months, LLL in the BCB group was 0.23±0.37 mm compared to 0.25±0.35 mm in the PCB group; the mean difference between the groups was -0.02 (95% confidence interval [CI]: -0.12 to 0.07) mm; p-value for non-inferiority<0.0001. Similar clinical outcomes were also observed for both groups at 12 months. In the optical coherence tomography substudy, the neointimal area at 9 months was 2.32±1.04 mm2 in the BCB group compared to 2.37±0.93 mm2 in the PCB group; the mean difference between the groups was -0.09 (95% CI: -0.94 to 0.76) mm2; p=non-significant. CONCLUSIONS: This head-to-head comparison of a novel BCB shows similar angiographic outcomes in the treatment of coronary DES-ISR compared with a clinically proven PCB. (ClinicalTrials.gov: NCT04733443).

6.
Foods ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731748

The dried Mume fructus (MF) is a special food and herbal medicine with a long history of processing and application. The browning index (BI) of Prunus mume (PM) is pivotal in determining the medicinal value and edible quality of MF. Exploring the BI of PM holds significant importance for both the selection of PM varieties and understanding the formation mechanism of high-quality MF. This study systematically analyzed the physicochemical properties, BI, and quality indicators of four PM varieties (Qingzhu Mei, Yesheng Mei, Nangao Mei, and Zhaoshui Mei) after processing into MF. The results showed significant differences in eight physicochemical indicators among the four PM varieties (p < 0.05). Notably, Qingzhu Mei exhibited the highest titratable acid content, Nangao Mei had the most prominent soluble solid and soluble sugar content, and Zhaoshui Mei showed outstanding performance in reducing sugar, soluble protein, and free amino acids. Regarding drying characteristics, Yesheng Mei and Nangao Mei required a shorter drying time. In terms of BI, Nangao Mei exhibited the greatest degree of browning and its color appearance was darker. When considering quality evaluation, Nangao Mei excelled in rehydration ability and extract content, while Zhaoshui Mei demonstrated outstanding levels of total phenols, total flavonoids, and total antioxidant capacity. Overall, the evaluation suggested that the Nangao Mei variety was more suitable for MF processing. These research results provide a valuable theoretical foundation for understanding the BI of PM varieties and serve as a reference for the selection of PM varieties as raw materials for processing MF.

7.
PLoS Comput Biol ; 20(5): e1011200, 2024 May.
Article En | MEDLINE | ID: mdl-38709852

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.


COVID-19 , Forecasting , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , Humans , Forecasting/methods , United States/epidemiology , Pandemics/statistics & numerical data , Computational Biology , Models, Statistical
8.
Phytomedicine ; 130: 155737, 2024 May 14.
Article En | MEDLINE | ID: mdl-38772183

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.

9.
Cancer Med ; 13(10): e7310, 2024 May.
Article En | MEDLINE | ID: mdl-38785213

BACKGROUND: To explore the effects of monitoring measurable residual disease and post-remission treatment selection on the clinical outcomes of B-cell acute lymphoblastic leukemia (B-ALL) in adults. METHODS: Between September 2010 and January 2022, adult patients with B-ALL who received combination chemotherapy, with or without allogeneic hematopoietic stem cell transplantation (allo-HSCT), were included in the retrospective study, which was approved by the Ethics Committee and the observation of Declaration of Helsinki conditions. RESULTS: One hundred and forty-three B-ALL patients achieved complete remission (CR) were included in the study, of whom 94 patients (65.7%) received allo-HSCT in first complete remission (CR1). Multivariate analysis showed that the most powerful factors affecting OS were transplantation (hazard ratio [HR] = 0.540, p = 0.037) and sustained measurable residue disease (MRD) negativity (HR = 0.508, p = 0.037). The subgroup analysis showed that the prognosis of the allo-HSCT group was better than that of the chemotherapy group, regardless of whether MRD was negative or positive after two courses of consolidation therapy. After consolidation therapy, the prognosis of patients with positive MRD remained significantly better in the allo-HSCT group than in the chemotherapy group. However, no significant difference was observed in the prognosis between the allo-HSCT and chemotherapy groups with negative MRD after consolidation therapy. CONCLUSIONS: B-ALL patients who achieve sustained MRD negativity during consolidation therapy have excellent long-term outcomes even without allo-HSCT. Allo-HSCT is associated with a significant benefit in terms of OS and DFS for patients who were with positive MRD during consolidation therapy.


Antineoplastic Combined Chemotherapy Protocols , Hematopoietic Stem Cell Transplantation , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Remission Induction , Humans , Male , Adult , Female , Retrospective Studies , Prognosis , Middle Aged , Young Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Adolescent , Treatment Outcome , Transplantation, Homologous
10.
Antibiotics (Basel) ; 13(5)2024 May 14.
Article En | MEDLINE | ID: mdl-38786171

Nontyphoidal Salmonella (NTS) is a cause of foodborne diarrheal diseases worldwide. Important emerging NTS serotypes that have spread as multidrug-resistant high-risk clones include S. Typhimurium monophasic variant and S. Kentucky. In this study, we isolated Salmonella in 5019 stool samples collected from patients with clinical diarrhea and 484 food samples. Antibiotic susceptibility testing and whole-genome sequencing were performed on positive strains. The detection rates of Salmonella among patients with diarrhea and food samples were 4.0% (200/5019) and 3.1% (15/484), respectively. These 215 Salmonella isolates comprised five main serotypes, namely S. Typhimurium monophasic variant, S. Typhimurium, S. London, S. Enteritidis, and S. Rissen, and were mainly resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. The MDR rates of five major serotypes were 77.4%, 56.0%, 66.7%, 53.3%, and 80.0%, respectively. The most commonly acquired extended-spectrum ß-lactamase-encoding genes were blaTEM-1B, blaOXA-10, and blaCTX-M-65. The S. Typhimurium monophasic variant strains from Jiaxing City belonged to a unique clone with broad antibiotic resistance. S. Kentucky isolates showed the highest drug resistance, and all were MDR strains. The discovery of high antibiotic resistance rates in this common foodborne pathogen is a growing concern; therefore, ongoing surveillance is crucial to effectively monitor this pathogen.

11.
JMIR Public Health Surveill ; 10: e55211, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713911

BACKGROUND: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.


Cognitive Dysfunction , Dementia , Rest , Humans , Female , Male , Cognitive Dysfunction/epidemiology , Middle Aged , Aged , Dementia/epidemiology , Prospective Studies , Rest/physiology , Adult , United Kingdom/epidemiology , Actigraphy , Risk Factors , Circadian Rhythm/physiology
12.
J Biomed Res ; : 1-15, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38808565

Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of KL2 significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.

13.
Animals (Basel) ; 14(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791693

Collective movement has emerged as a key area of interest in animal behavior. While individual differences are often viewed as a potential threat to group cohesion, growing evidence suggests that these differences can actually influence an animal's behavior as an initiator or follower during collective movements, thereby driving the group's movement and decision-making processes. To resolve the divergence, we asked how personality can affect the dynamics of collective movements in one group of free-ranging Tibetan macaques (Macaca thibetana) in Huangshan, China. We assessed individual personality using principal component analysis and applied the generalized linear mixed model and linear mixed model to examine the influence of personality on decision making during collective movements. Our findings reveled three distinct personality types among Tibetan macaques: sociability, boldness, and anxiousness. Individuals with higher sociability scores and rank, or those with lower anxiousness scores, were more likely to initiate successful collective movements. Older individuals were less successful in initiating movements compared to young adults. Leaders with lower anxiousness scores or higher rank attracted more followers, with females attracting larger groups than males. As for followers, individuals with higher rank tended to join the collective movement earlier. Additionally, individuals with higher sociability or boldness scores had shorter joining latency in collective movement. Finally, there was a longer joining latency for middle-aged adults compared to young adults. These results suggest that individual differences are a potential driver of collective movements. We provide some insights into the relationships between personality and decision making in Tibetan macaques.

14.
Org Lett ; 26(19): 4071-4076, 2024 May 17.
Article En | MEDLINE | ID: mdl-38696713

An electrochemical oxidative difunctionalization of diazo compounds with diselenides and nucleophiles has been developed. This innovative approach yields a diverse array of selenium-containing pyrazole esters and alkoxy esters, overcoming the limitations of traditional synthesis methods. Remarkably, various nucleophiles, including acids, alcohols, and pyrazoles, can be seamlessly incorporated. Notably, this protocol boasts high atom efficiency, excellent functional group tolerance, and good efficiency and operates under transition metal- and oxidant-free conditions, distinguishing it in the field.

15.
Heliyon ; 10(9): e30316, 2024 May 15.
Article En | MEDLINE | ID: mdl-38774107

In the post-epidemic era, public panic has emerged as a highly significant secondary disaster, necessitating an urgent enhancement of emergency management capabilities by governments at all levels. In order to ensure a robust assessment of the government's ability to manage public panic, it is crucial to effectively address the influence of uncertain and ambiguous factors associated with such scenarios. This paper proposes a governmental public panic emergency management capability assessment method based on fuzzy Petri nets. By analyzing the factors influencing public panic across the four evolutionary stages, namely gestation, outbreak, diffusion, and fading, we establish a hierarchical evaluation index system for assessing emergency management capabilities. Additionally, we develop a range of multi-scenario emergency management strategies. To address the challenges posed by uncertainty, randomness, fuzziness, and insufficient statistical data within the assessment index system, we introduce fuzzy Petri nets and fuzzy reasoning rules to evaluate the emergency management capability of the assessment system and derive the optimal emergency management strategy. According to example simulations, the effectiveness and practicality of models and rules constructed using fuzzy Petri nets are demonstrated, highlighting their superiority over traditional assessment methods. This comprehensive approach equips the government with a versatile toolkit for effectively managing public panic emergencies.

16.
J Environ Manage ; 359: 120943, 2024 May.
Article En | MEDLINE | ID: mdl-38701583

Historical reconstruction of heavy metals (HMs) contamination in sediments is a key for understanding the effects of anthropogenic stresses on water bodies and predicting the variation trends of environmental state. In this work, eighteen sediment cores from the Pearl River Estuary (PRE) were collected to determine concentrations and geochemical fractions of HMs. Then, their potential sources and the relative contributions during different time periods were quantitatively identified by integrating lead-210 (210Pb) radioisotope dating technique into positive matrix factorisation (PMF) method. Pollution levels and potential ecological risks (PERs) caused by HMs were accurately assessed by enrichment factors (EF) based on establishment of their geochemical baselines (GCBs) and multiparameter evaluation index (MPE). HMs concentrations generally showed a particle size- and organic matter-dependent distribution pattern. During the period of 1958-1978, HMs concentrations remained at low levels with agricultural activities and natural processes being identified as the predominant sources and averagely contributing >60%. Since the reform and opening-up in 1978, industrial and traffic factors become the primary anthropogenic sources of HMs (such as Cu, Zn, Cd, Pb, Cr, and Ni), averagely increasing from 22.1% to 28.1% and from 11.6% to 23.4%, respectively. Conversely, the contributions of agricultural and natural factors decreased from 37.0% to 28.5% and from 29.3% to 20.0%, respectively. Subsequently, implementation of environmental preservation policies was mainly responsible for the declining trend of HMs after 2010. Little enrichment of sediment Cu, Zn, Pb, Cr and Ni with EFs (0.15-1.43) was found in the PRE, whereas EFs of Cd (1.16-2.70) demonstrated a slight to moderate enrichment. MPE indices of Cu (50.7-252), Pb (52.0-147), Zn (35.5-130), Ni (19.6-71.5), Cr (14.2-68.8) and Cd (0-9.90) highlighted their potential ecological hazards due to their non-residual fractions and anthropogenic sources.


Environmental Monitoring , Estuaries , Geologic Sediments , Metals, Heavy , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Risk Assessment , China , Rivers/chemistry , Geologic Sediments/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
17.
ACS Nano ; 18(20): 13346-13360, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726755

Photonic elastomers, capable of converting imperceptible deformations into visible colors, show significant potential in smart materials. However, instantaneous deformation is arduous to record accurately due to the disappearance of optical information after deformation recovery. Herein, inspired by the folding structures of iridocytes in cephalopods, a stress- and moisture-triggered wrinkling and erasure effect is proposed to be introduced in the construction of a photonic elastomer. Implemented in a dual-network polymer framework with modulatable locking, it allows for reversible deformation storage. The photonic elastomer comprises a surface one-dimensional photonic crystal (1DPC) and a poly(dimethylsiloxane) (PDMS) substrate. The deformed 1DPC lattice transforms into a wrinkled state due to a substrate deformation mismatch, preserving strain-induced structural color information through interchain hydrogen bonding and crystalline shape-locking in dual-network polymers. Reading the color provides multidimensional information about the instantaneous deformation degree and distribution. Moreover, the moisture-induced shape-memory feature of the 1DPC can be triggered with a minute amount of water, like fingertip perspiration or humidity change (35% to 80%), to restore the original color. This stress/moisture-responsive photonic elastomer, with its dynamically reconfigurable wrinkle-lattice, holds great promise for applications in mechanical sensing, inkless writing, and anticounterfeiting, significantly enhancing the versatility of photonic materials.

18.
Phytomedicine ; 130: 155553, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38820664

INTRODUCTION: Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE: This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS: In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS: Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION: The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.

19.
Phys Chem Chem Phys ; 26(21): 15332-15337, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748511

Catalytic conversion of NO has long been a focus of atmospheric pollution control and diesel vehicle exhaust treatment. Rhodium is one of the most effective metals for catalyzing NO reduction, and understanding the nature of the active sites and underlying mechanisms can help improve the design of Rh-based catalysts towards NO reduction. In this work, we investigated the detailed catalytic mechanisms for the direct reduction of NO to N2 by fullerene-supported rhodium clusters, C60Rh4+, with density functional theory calculations. We found that the presence of C60 facilitates the smooth reduction of NO into N2 and O2, as well as their subsequent desorption, recovering the catalyst C60Rh4+. Such a process fails to be completed by free Rh4+, emphasizing the critical importance of C60 support. We attribute the novel performance of C60Rh4+ to the electron sponge effect of C60, providing useful guidance for designing efficient catalysts for the direct reduction of NO.

20.
Front Neurol ; 15: 1308058, 2024.
Article En | MEDLINE | ID: mdl-38746655

Background: Motor impairment is the most prevalent consequence following a stroke. Interhemispheric homotopic connectivity, which varies regionally and hierarchically along the axis of the somatomotor-association cortex, plays a critical role in sustaining normal motor functions. However, the impact of strokes occurring in various locations on homotopic connectivity is not fully understood. This study aimed to explore how motor deficits resulting from acute strokes in different locations influence homotopic connectivity. Methods: Eighty-four acute ischemic stroke patients with dyskinesia were recruited and divided into four demographically-matched subgroups based on stroke locations: Group 1 (G1; frontoparietal, n = 15), Group 2 (G2; radiation coronal, n = 16), Group 3 (G3; basal ganglia, n = 30), and Group 4 (G4; brain stem, n = 23). An additional 37 demographically-matched healthy controls were also recruited in the study. Multimodal MRI data, motor function assessments, and cognitive tests were gathered for analysis. Interhemispheric homotopic functional and structural connectivity were measured using resting-state functional MRI and diffusion tensor imaging, respectively. These measurements were then correlated with motor function scores to investigate the relationships. Results: Voxel-mirrored homotopic connectivity (VMHC) analysis showed that strokes in the frontoparietal and basal ganglia regions led to diminished homotopic connectivity in the somatosensory/motor cortex. In contrast, strokes in the radiation coronal and brainstem regions affected subcortical motor circuits. Structural homotopic connectivity analysis using diffusion tensor imaging showed that frontoparietal and basal ganglia strokes predominantly affected association fibers, while radiation coronal and brainstem strokes caused widespread disruption in the integrity of both cortical-cortical and cortical-subcortical white matter fibers. Correlation analyses demonstrated significant associations between the Fugl-Meyer Assessment (FMA), Modified Barthel Index (MBI), and National Institutes of Health Stroke Scale (NIHSS) scores with the VMHC in the inferior temporal gyrus for G1 (G1; r = 0.838, p < 0.001; r = 0.793, p < 0.001; and r = -0.834, p < 0.001, respectively). No statistically significant associations were observed in Groups 2, 3, and 4. Conclusion: Our results suggest that motor deficits following strokes in various regions involve distinct pathways from cortical to subcortical areas. Alterations in lesion topography and regional functional homotopy provide new insights into the understanding of neural underpinnings of post-stroke dyskinesia.

...