Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(38): eado8107, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303029

ABSTRACT

Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.


Subject(s)
ATP-Binding Cassette Transporters , Escherichia coli Proteins , Escherichia coli , Spermidine , Spermidine/metabolism , Spermidine/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Biological Transport , Models, Molecular , Protein Conformation , Protein Binding
2.
Structure ; 32(10): 1603-1610.e3, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39181124

ABSTRACT

The SPFH (stomatin, prohibitin, flotillin, and HflK/C) protein family is universally present and encompasses the evolutionarily conserved SPFH domain. These proteins are predominantly localized in lipid raft and implicated in various biological processes. The NfeD (nodulation formation efficiency D) protein family is often encoded in tandem with SPFH proteins, suggesting a close functional relationship. Here, we elucidate the cryoelectron microscopy (cryo-EM) structure of the Escherichia coli QmcA-YbbJ complex belonging to the SPFH and NfeD families, respectively. Our findings reveal that the QmcA-YbbJ complex forms an intricate cage-like structure composed of 26 copies of QmcA-YbbJ heterodimers. The transmembrane helices of YbbJ act as adhesive elements bridging adjacent QmcA molecules, while the oligosaccharide-binding domain of YbbJ encapsulates the SPFH domain of QmcA. Our structural study significantly contributes to understanding the functional role of the NfeD protein family and sheds light on the interplay between SPFH and NfeD family proteins.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins , Escherichia coli , Models, Molecular , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Multimerization , Protein Binding , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Binding Sites , Protein Domains
3.
Commun Biol ; 7(1): 1070, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217277

ABSTRACT

In the absence of an efficacious vaccine, chemotherapy remains crucial to prevent and treat malaria. Given its key role in haemoglobin degradation, falcilysin constitutes an attractive target. Here, we reveal the mechanism of enzymatic inhibition of falcilysin by MK-4815, an investigational new drug with potent antimalarial activity. Using X-ray crystallography, we determine two binary complexes of falcilysin in a closed state, bound with peptide substrates from the haemoglobin α and ß chains respectively. An antiparallel ß-sheet is formed between the substrate and enzyme, accounting for sequence-independent recognition at positions P2 and P1. In contrast, numerous contacts favor tyrosine and phenylalanine at the P1' position of the substrate. Cryo-EM studies reveal a majority of unbound falcilysin molecules adopting an open conformation. Addition of MK-4815 shifts about two-thirds of falcilysin molecules to a closed state. These structures give atomic level pictures of the proteolytic cycle, in which falcilysin interconverts between a closed state conducive to proteolysis, and an open conformation amenable to substrate diffusion and products release. MK-4815 and quinolines bind to an allosteric pocket next to a hinge region of falcilysin and hinders this dynamic transition. These data should inform the design of potent inhibitors of falcilysin to combat malaria.


Subject(s)
Antimalarials , Plasmodium falciparum , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Crystallography, X-Ray , Models, Molecular , Cryoelectron Microscopy , Humans
4.
JACS Au ; 4(8): 2925-2935, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39211597

ABSTRACT

Anthraquinone-fused enediynes are anticancer natural products featuring a DNA-intercalating anthraquinone moiety. Despite recent insights into anthraquinone-fused enediyne (AQE) biosynthesis, the enzymatic steps involved in anthraquinone biogenesis remain to be elucidated. Through a combination of in vitro and in vivo studies, we demonstrated that a two-enzyme system, composed of a flavin adenine dinucleotide (FAD)-dependent monooxygenase (DynE13) and a cofactor-free enzyme (DynA1), catalyzes the final steps of anthraquinone formation by converting δ-thiolactone anthracene to hydroxyanthraquinone. We showed that the three oxygen atoms in the hydroxyanthraquinone originate from molecular oxygen (O2), with the sulfur atom eliminated as H2S. We further identified the key catalytic residues of DynE13 and A1 by structural and site-directed mutagenesis studies. Our data support a catalytic mechanism wherein DynE13 installs two oxygen atoms with concurrent desulfurization and decarboxylation, whereas DynA1 acts as a cofactor-free monooxygenase, installing the final oxygen atom in the hydroxyanthraquinone. These findings establish the indispensable roles of DynE13 and DynA1 in AQE biosynthesis and unveil novel enzymatic strategies for anthraquinone formation.

5.
EMBO Mol Med ; 15(12): e18526, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37971164

ABSTRACT

Aging results from the accumulation of molecular damage that impairs normal biochemical processes. We previously reported that age-linked damage to amino acid sequence NGR (Asn-Gly-Arg) results in "gain-of-function" conformational switching to isoDGR (isoAsp-Gly-Arg). This integrin-binding motif activates leukocytes and promotes chronic inflammation, which are characteristic features of age-linked cardiovascular disorders. We now report that anti-isoDGR immunotherapy mitigates lifespan reduction of Pcmt1-/- mouse. We observed extensive accumulation of isoDGR and inflammatory cytokine expression in multiple tissues from Pcmt1-/- and naturally aged WT animals, which could also be induced via injection of isoDGR-modified plasma proteins or synthetic peptides into young WT animals. However, weekly injection of anti-isoDGR mAb (1 mg/kg) was sufficient to significantly reduce isoDGR-protein levels in body tissues, decreased pro-inflammatory cytokine concentrations in blood plasma, improved cognition/coordination metrics, and extended the average lifespan of Pcmt1-/- mice. Mechanistically, isoDGR-mAb mediated immune clearance of damaged isoDGR-proteins via antibody-dependent cellular phagocytosis (ADCP). These results indicate that immunotherapy targeting age-linked protein damage may represent an effective intervention strategy in a range of human degenerative disorders.


Subject(s)
Cytokines , Longevity , Humans , Animals , Mice , Aged , Amino Acid Sequence , Protein Binding
6.
BMC Biol ; 21(1): 62, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36978084

ABSTRACT

BACKGROUND: Envelope stress responses (ESRs) are critical for adaptive resistance of Gram-negative bacteria to envelope-targeting antimicrobial agents. However, ESRs are poorly defined in a large number of well-known plant and human pathogens. Dickeya oryzae can withstand a high level of self-produced envelope-targeting antimicrobial agents zeamines through a zeamine-stimulated RND efflux pump DesABC. Here, we unraveled the mechanism of D. oryzae response to zeamines and determined the distribution and function of this novel ESR in a variety of important plant and human pathogens. RESULTS: In this study, we documented that a two-component system regulator DzrR of D. oryzae EC1 mediates ESR in the presence of envelope-targeting antimicrobial agents. DzrR was found modulating bacterial response and resistance to zeamines through inducing the expression of RND efflux pump DesABC, which is likely independent on DzrR phosphorylation. In addition, DzrR could also mediate bacterial responses to structurally divergent envelope-targeting antimicrobial agents, including chlorhexidine and chlorpromazine. Significantly, the DzrR-mediated response was independent on the five canonical ESRs. We further presented evidence that the DzrR-mediated response is conserved in the bacterial species of Dickeya, Ralstonia, and Burkholderia, showing that a distantly located DzrR homolog is the previously undetermined regulator of RND-8 efflux pump for chlorhexidine resistance in B. cenocepacia. CONCLUSIONS: Taken together, the findings from this study depict a new widely distributed Gram-negative ESR mechanism and present a valid target and useful clues to combat antimicrobial resistance.


Subject(s)
Anti-Infective Agents , Chlorhexidine , Humans , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism
7.
Arterioscler Thromb Vasc Biol ; 43(3): 427-442, 2023 03.
Article in English | MEDLINE | ID: mdl-36700429

ABSTRACT

BACKGROUND: Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS: We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS: Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS: These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Mice , Animals , Sodium Chloride, Dietary/adverse effects , Proteomics , Mechanotransduction, Cellular , Blood Pressure/physiology
8.
FEBS J ; 290(13): 3336-3354, 2023 07.
Article in English | MEDLINE | ID: mdl-35816016

ABSTRACT

The actin cytoskeleton (AC) undergoes rapid remodelling to coordinate cellular processes during signal transduction, including changes in actin nucleation, crosslinking, and depolymerization in a time- and space-dependent manner. Switching the initial actin nucleation often provides timely control of the entire actin network formation. Located at the cell surface, the plant class I formin family is a major class of actin nucleators that rapidly respond to exterior chemical and environmental cues. Plant class I formins are structurally integrated within the plant cell wall-plasma membrane-actin cytoskeleton (CW-PM-AC) continuum, sharing similar biophysical properties to mammalian integrins that are embedded within the extracellular matrix-PM-AC continuum. In plants, perturbation of structural components of the CW-PM-AC continuum changes the biophysical properties of two dimensional-scaffolding structures, which results in uncontrolled molecular diffusion and interactions of class I formins, as well as their clustering and activities in the nucleation of the AC. Emerging studies have shown that the PM-integrated formins are highly responsive to the mechanical perturbation of CW and AC integrity changes that tune the oligomerization and condensation of formin on the cell surface. However, during diverse signalling transductions, the molecular mechanisms that spatiotemporally underlie the mechanosensing and mechanoregulation of formin for remodelling actin remain unclear. Here, the emphasis will be placed on recent developments in understanding how the molecular condensation of class I formin regulates the biochemical activities in tuning actin polymerization during plant immune signalling, as well as how the plant structural components of the CW-PM-AC continuum control formin condensation at a nanometre scale.


Subject(s)
Actins , Microfilament Proteins , Animals , Actins/metabolism , Formins/metabolism , Microfilament Proteins/metabolism , Integrins/metabolism , Actin Cytoskeleton/metabolism , Plants/metabolism , Mammals/metabolism
9.
mLife ; 2(3): 295-307, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38817810

ABSTRACT

To remain competitive, proteobacteria use various contact-dependent weapon systems to defend against microbial competitors. The bacterial-killing type IV secretion system (T4SS) is one such powerful weapon. It commonly controls the killing/competition between species by secreting the lethal T4SS effector (T4E) proteins carrying conserved XVIPCD domains into competing cells. In this study, we sought knowledge to understand whether the bacterial-killing T4SS-producing bacteria encode T4E-like proteins and further explore their biological functions. To achieve this, we designed a T4E-guided approach to discover T4E-like proteins that are designated as atypical T4Es. Initially, this approach required scientists to perform simple BlastP search to identify T4E homologs that lack the XVIPCD domain in the genomes of T4SS-producing bacteria. These homologous genes were then screened in Escherichia coli to identify antibacterial candidates (atypical T4Es) and their neighboring detoxification proteins, followed by testing their gene cotranscription and validating their physical interactions. Using this approach, we did discover two atypical T4E proteins from the plant-beneficial Lysobacter enzymogenes and the phytopathogen Xanthomonas citri. We also provided substantial evidence to show that the atypical T4E protein Le1637-mediated bacterial defense in interspecies interactions between L. enzymogenes and its competitors. Therefore, the newly designed T4E-guided approach holds promise for detecting functional atypical T4E proteins in bacterial cells.

10.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232970

ABSTRACT

Lacunar infarction (LACI), a subtype of acute ischemic stroke, has poor mid- to long-term prognosis due to recurrent vascular events or incident dementia which is difficult to predict using existing clinical data. Herein, we aim to discover blood-based biomarkers for LACI as a complementary prognostic tool. Convalescent plasma was collected from forty-five patients following a non-disabling LACI along with seventeen matched control subjects. The patients were followed up prospectively for up to five years to record an occurrence of adverse outcome and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events). Medium-sized extracellular vesicles (MEVs), isolated from the pooled plasma of four groups, were analyzed by stable isotope labeling and 2D-LC-MS/MS. Out of 573 (FDR < 1%) quantified proteins, 146 showed significant changes in at least one LACI group when compared to matched healthy control. A systems analysis revealed that major elements (~85%) of the MEV proteome are different from the proteome of small-sized extracellular vesicles obtained from the same pooled plasma. The altered MEV proteins in LACI patients are mostly reduced in abundance. The majority of the shortlisted MEV proteins are not linked to commonly studied biological processes such as coagulation, fibrinolysis, or inflammation. Instead, they are linked to oxygen-glucose deprivation, endo-lysosomal trafficking, glucose transport, and iron homeostasis. The dataset is provided as a web-based data resource to facilitate meta-analysis, data integration, and targeted large-scale validation.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Stroke, Lacunar , Biomarkers/metabolism , Chromatography, Liquid , Extracellular Vesicles/metabolism , Glucose , Humans , Iron , Oxygen , Prognosis , Proteome/metabolism , Proteomics , Tandem Mass Spectrometry
11.
Sci Adv ; 8(34): eabq1211, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36001661

ABSTRACT

Vegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel ß sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity. We showed that AtWRI1 represented a previously unidentified structural fold and DNA-binding mode. Mutations of the key residues interacting with DNA element affected its binding affinity and oil biosynthesis when these variants were transiently expressed in tobacco leaves. Seed oil content was enhanced in stable transgenic wri1-1 expressing an AtWRI1 variant (W74R). Together, our findings offer a structural basis explaining WRI1 recognition and binding of DNA and suggest an alternative strategy to increase oil yield in crops through WRI1 bioengineering.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Humans , Plant Oils/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Cell Rep ; 39(9): 110890, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649372

ABSTRACT

The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the ß2-ß3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.


Subject(s)
Escherichia coli Proteins , ATP-Dependent Proteases/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Humans
13.
FEBS Lett ; 596(1): 71-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34837384

ABSTRACT

Global transcriptional regulator downstream RpfR (GtrR) is a key downstream regulator for quorum-sensing signaling molecule cis-2-dodecenoic acid (BDSF). As a bacterial enhancer-binding protein (bEBP), GtrR is composed of an N-terminal receiver domain, a central ATPases associated with diverse cellular activities (AAA+) ATPase σ54 -interaction domain, and a C-terminal helix-turn-helix DNA-binding domain. In this work, we solved its AAA+ ATPase domain in both apo and GTP-bound forms. The structure revealed how GtrR specifically recognizes GTP. In addition, we also revealed that GtrR has moderate GTPase activity in vitro in the absence of its activation signal. Finally, we found the residues K170, D236, R311, and R357 in GtrR that are crucial to its biological function, any single mutation leading to completely abolishing GtrR activity.


Subject(s)
Burkholderia cenocepacia
15.
Front Microbiol ; 12: 686049, 2021.
Article in English | MEDLINE | ID: mdl-34326822

ABSTRACT

BPI-inducible protein A (BipA), a highly conserved paralog of the well-known translational GTPases LepA and EF-G, has been implicated in bacterial motility, cold shock, stress response, biofilm formation, and virulence. BipA binds to the aminoacyl-(A) site of the bacterial ribosome and establishes contacts with the functionally important regions of both subunits, implying a specific role relevant to the ribosome, such as functioning in ribosome biogenesis and/or conditional protein translation. When cultured at suboptimal temperatures, the Escherichia coli bipA genomic deletion strain (ΔbipA) exhibits defects in growth, swimming motility, and ribosome assembly, which can be complemented by a plasmid-borne bipA supplementation or suppressed by the genomic rluC deletion. Based on the growth curve, soft agar swimming assay, and sucrose gradient sedimentation analysis, mutation of the catalytic residue His78 rendered plasmid-borne bipA unable to complement its deletion phenotypes. Interestingly, truncation of the C-terminal loop of BipA exacerbates the aforementioned phenotypes, demonstrating the involvement of BipA in ribosome assembly or its function. Furthermore, tandem mass tag-mass spectrometry analysis of the ΔbipA strain proteome revealed upregulations of a number of proteins (e.g., DeaD, RNase R, CspA, RpoS, and ObgE) implicated in ribosome biogenesis and RNA metabolism, and these proteins were restored to wild-type levels by plasmid-borne bipA supplementation or the genomic rluC deletion, implying BipA involvement in RNA metabolism and ribosome biogenesis. We have also determined that BipA interacts with ribosome 50S precursor (pre-50S), suggesting its role in 50S maturation and ribosome biogenesis. Taken together, BipA demonstrates the characteristics of a bona fide 50S assembly factor in ribosome biogenesis.

16.
Int J Mol Sci ; 22(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069640

ABSTRACT

Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."


Subject(s)
Drug Resistance, Microbial/physiology , Ribosomal Proteins/metabolism , Ribosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Multiple/drug effects , Models, Molecular , Protein Biosynthesis/drug effects , Ribosomal Proteins/drug effects , Ribosomes/drug effects
17.
Microbiol Spectr ; 9(1): e0016921, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34132580

ABSTRACT

Nonstructural protein 1 (Nsp1) of severe acute respiratory syndrome coronaviruses (SARS-CoVs) is an important pathogenic factor that inhibits host protein translation by means of its C terminus. However, its N-terminal function remains elusive. Here, we determined the crystal structure of the N terminus (amino acids [aa] 11 to 125) of SARS-CoV-2 Nsp1 at a 1.25-Å resolution. Further functional assays showed that the N terminus of SARS-CoVs Nsp1 alone loses the ability to colocalize with ribosomes and inhibit protein translation. The C terminus of Nsp1 can colocalize with ribosomes, but its protein translation inhibition ability is significantly weakened. Interestingly, fusing the C terminus of Nsp1 with enhanced green fluorescent protein (EGFP) or other proteins in place of its N terminus restored the protein translation inhibitory ability to a level equivalent to that of full-length Nsp1. Thus, our results suggest that the N terminus of Nsp1 is able to stabilize the binding of the Nsp1 C terminus to ribosomes and act as a nonspecific barrier to block the mRNA channel, thus abrogating host mRNA translation.


Subject(s)
SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , COVID-19 , Crystallography, X-Ray , HEK293 Cells , Humans , Protein Biosynthesis , Protein Conformation , Protein Domains , RNA, Messenger , Sequence Analysis, Protein , Viral Nonstructural Proteins/metabolism
18.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33912917

ABSTRACT

Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its ß-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.


Subject(s)
Membrane Proteins , Neoplasm Proteins , Cell Adhesion , Focal Adhesions , Integrins/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics
19.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33729990

ABSTRACT

Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Cellulose/metabolism , Glucosyltransferases/chemistry , Uridine Diphosphate Glucose/chemistry , Amino Acids , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Manganese/chemistry , Manganese/metabolism , Mutation , Protein Multimerization , Uridine Diphosphate Glucose/metabolism
20.
Nat Commun ; 12(1): 1739, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741959

ABSTRACT

Extensive testing is essential to break the transmission of SARS-CoV-2, which causes the ongoing COVID-19 pandemic. Here, we present a CRISPR-based diagnostic assay that is robust to viral genome mutations and temperature, produces results fast, can be applied directly on nasopharyngeal (NP) specimens without RNA purification, and incorporates a human internal control within the same reaction. Specifically, we show that the use of an engineered AsCas12a enzyme enables detection of wildtype and mutated SARS-CoV-2 and allows us to perform the detection step with loop-mediated isothermal amplification (LAMP) at 60-65 °C. We also find that the use of hybrid DNA-RNA guides increases the rate of reaction, enabling our test to be completed within 30 minutes. Utilizing clinical samples from 72 patients with COVID-19 infection and 57 healthy individuals, we demonstrate that our test exhibits a specificity and positive predictive value of 100% with a sensitivity of 50 and 1000 copies per reaction (or 2 and 40 copies per microliter) for purified RNA samples and unpurified NP specimens respectively.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics , Bacterial Proteins/genetics , COVID-19/virology , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases/genetics , Humans , Molecular Diagnostic Techniques/methods , Mutation , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL