Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000353

ABSTRACT

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Subject(s)
Actin Cytoskeleton , Connexin 26 , Connexin 43 , Gap Junctions , rhoA GTP-Binding Protein , Actin Cytoskeleton/metabolism , rhoA GTP-Binding Protein/metabolism , Gap Junctions/metabolism , Connexin 43/metabolism , Connexin 26/metabolism , Humans , Animals , Cell Membrane/metabolism , Actins/metabolism
2.
Biol Res ; 57(1): 31, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783330

ABSTRACT

BACKGROUND: Members of the ß-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS: To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS: Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS: These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.


Subject(s)
Connexins , Gap Junctions , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Connexins/metabolism , Connexins/genetics , Connexins/chemistry , Gap Junctions/metabolism , Gap Junctions/physiology , Humans , Animals , Mutation , Cell Communication/physiology
3.
J Cancer Res Clin Oncol ; 149(19): 17335-17346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831273

ABSTRACT

PURPOSE: The CCR5/CCL5 axis is essential for interactions between malignant cells and microenvironment components, promoting tumor progression in oral squamous cell carcinoma (OSCC). This study aims to evaluate the association of CCL5 and CCR5 with the behavior of oral cancer and assess the therapeutic potential of a CCR5 antagonist. METHODS: A retrospective study to analyze CCR5 and CCL5 expression on paraffin-embedded tissues was performed. In cell lines, rhCCL5 was added to induce CCR5-related pathways, and Maraviroc and shRNA against CCR5 were used to neutralize the receptor. Finally, an in vivo murine orthotopic xenograft model of tongue cancer was used to evaluate Maraviroc as an oncologic therapy. After 15 days, the mice were killed, and the primary tumors and cervical lymph nodes were analyzed. RESULTS: The expression of CCR5 was associated with clinical stage and metastasis, and CCL5 was related to overall survival. Adding rhCCL5 induced cell proliferation, while shRNA and Maraviroc reduced it in a dose-dependent manner. Maraviroc treatment also increased apoptosis and modified cytoskeletal organization. In vivo, Maraviroc reduced neck metastasis. CONCLUSIONS: The effects of CCR5 antagonists in OSCC have been poorly studied, and this study reports in vitro and in vivo evidence for the effects of Maraviroc in OSCC. Our results suggest that the CCR5/CCL5 axis plays a role in oral cancer behavior, and that its inhibition is a promising new therapy alternative.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Animals , Mice , Maraviroc/pharmacology , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Retrospective Studies , Cell Line, Tumor , Mouth Neoplasms/drug therapy , RNA, Small Interfering/metabolism , Tumor Microenvironment , Chemokine CCL5/genetics , Chemokine CCL5/metabolism
4.
Mol Psychiatry ; 27(8): 3328-3342, 2022 08.
Article in English | MEDLINE | ID: mdl-35501408

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Male , Female , Autistic Disorder/genetics , TRPC6 Cation Channel/genetics , Autism Spectrum Disorder/genetics , Drosophila , Drosophila melanogaster/genetics , Mutation/genetics
5.
Front Cell Dev Biol ; 10: 1071202, 2022.
Article in English | MEDLINE | ID: mdl-36699003

ABSTRACT

Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.

6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613922

ABSTRACT

The interaction between malignant cells and the tumor microenvironment is critical for tumor progression, and the chemokine ligand/receptor axes play a crucial role in this process. The CXCR4/CXCL12 and CCR5/CCL5 axes, both related to HIV, have been associated with the early (epithelial-mesenchymal transition and invasion) and late events (migration and metastasis) of cancer progression. In addition, these axes can also modulate the immune response against tumors. Thus, antagonists against the receptors of these axes have been proposed in cancer therapy. Although preclinical studies have shown promising results, clinical trials are needed to include these drugs in the oncological treatment protocols. New alternatives for these antagonists, such as dual CXCR4/CCR5 antagonists or combined therapy in association with immunotherapy, need to be studied in cancer therapy.


Subject(s)
CCR5 Receptor Antagonists , Carcinoma , Receptors, CXCR4 , Humans , Carcinoma/drug therapy , Chemokine CXCL12 , Receptors, CCR5 , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction , Tumor Microenvironment , CCR5 Receptor Antagonists/therapeutic use
7.
Int J Mol Sci ; 22(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499026

ABSTRACT

Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.


Subject(s)
Actins/chemistry , Cell Membrane/metabolism , Connexins/metabolism , Fibroblasts/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Purinergic P2X7/metabolism , Skin/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , Cell Movement , Humans , Mice , Mice, Inbred C57BL , Protein Isoforms , RNA, Small Interfering/metabolism , Wound Healing
8.
J Gen Physiol ; 151(3): 328-341, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30530766

ABSTRACT

A group of human mutations within the N-terminal (NT) domain of connexin 26 (Cx26) hemichannels produce aberrant channel activity, which gives rise to deafness and skin disorders, including keratitis-ichthyosis-deafness (KID) syndrome. Structural and functional studies indicate that the NT of connexin hemichannels is folded into the pore, where it plays important roles in permeability and gating. In this study, we explore the molecular basis by which N14K, an NT KID mutant, promotes gain of function. In macroscopic and single-channel recordings, we find that the N14K mutant favors the open conformation of hemichannels, shifts calcium and voltage sensitivity, and slows deactivation kinetics. Multiple copies of MD simulations of WT and N14K hemichannels, followed by the Kolmogorov-Smirnov significance test (KS test) of the distributions of interaction energies, reveal that the N14K mutation significantly disrupts pairwise interactions that occur in WT hemichannels between residue K15 of one subunit and residue E101 of the adjacent subunit (E101 being located at the transition between transmembrane segment 2 [TM2] and the cytoplasmic loop [CL]). Double mutant cycle analysis supports coupling between the NT and the TM2/CL transition in WT hemichannels, which is disrupted in N14K mutant hemichannels. KS tests of the α carbon correlation coefficients calculated over MD trajectories suggest that the effects of the N14K mutation are not confined to the K15-E101 pairs but extend to essentially all pairwise residue correlations between the NT and TM2/CL interface. Together, our data indicate that the N14K mutation increases hemichannel open probability by disrupting interactions between the NT and the TM2/CL region of the adjacent connexin subunit. This suggests that NT-TM2/CL interactions facilitate Cx26 hemichannel closure.


Subject(s)
Connexin 26/chemistry , Ion Channel Gating , Mutation, Missense , Protein Multimerization , Animals , Connexin 26/genetics , Connexin 26/metabolism , Humans , Protein Binding , Xenopus
9.
J Gen Physiol ; 150(5): 697-711, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29643172

ABSTRACT

Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.


Subject(s)
Connexin 26/metabolism , Deafness/genetics , Ichthyosis/genetics , Ion Channel Gating , Keratitis/genetics , Mutation, Missense , Animals , Connexin 26/chemistry , Connexin 26/genetics , Humans , Molecular Dynamics Simulation , Xenopus
10.
Biochim Biophys Acta Biomembr ; 1860(1): 91-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29017810

ABSTRACT

Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels.


Subject(s)
Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Membrane Potentials/physiology , Nitric Oxide/metabolism , Animals , Biological Transport, Active/physiology , Humans , Oxidation-Reduction
11.
Sci Rep ; 7(1): 15851, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29158540

ABSTRACT

The opening of connexin (Cx) hemichannels in the membrane is tightly regulated by calcium (Ca2+) and membrane voltage. Electrophysiological and atomic force microscopy experiments indicate that Ca2+ stabilizes the hemichannel closed state. However, structural data show that Ca2+ binding induces an electrostatic seal preventing ion transport without significant structural rearrangements. In agreement with the closed-state stabilization hypothesis, we found that the apparent Ca2+ sensitivity is increased as the voltage is made more negative. Moreover, the voltage and Ca2+ dependence of the channel kinetics indicate that the voltage sensor movement and Ca2+ binding are allosterically coupled. An allosteric kinetic model in which the Ca2+ decreases the energy necessary to deactivate the voltage sensor reproduces the effects of Ca2+ and voltage in Cx46 hemichannels. In agreement with the model and suggesting a conformational change that narrows the pore, Ca2+ inhibits the water flux through Cx hemichannels. We conclude that Ca2+ and voltage act allosterically to stabilize the closed conformation of Cx46 hemichannels.


Subject(s)
Calcium Channels/genetics , Calcium Signaling/genetics , Calcium/metabolism , Connexins/genetics , Animals , Connexins/metabolism , Electrophysiology , Humans , Kinetics , Membrane Potentials/genetics , Microscopy, Atomic Force , Oocytes/growth & development , Oocytes/metabolism , Oocytes/ultrastructure , Rats , Xenopus laevis/genetics , Xenopus laevis/growth & development
12.
J Biol Chem ; 291(30): 15740-52, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27143357

ABSTRACT

Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.


Subject(s)
Avian Proteins/metabolism , Connexins/metabolism , Ion Channel Gating/physiology , Membrane Potentials/physiology , Animals , Avian Proteins/genetics , Chickens , Connexins/genetics , Humans , Protein Domains , Rats , Xenopus laevis
13.
BMC Cell Biol ; 17 Suppl 1: 17, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27228968

ABSTRACT

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Subject(s)
Channelopathies/metabolism , Connexins/chemistry , Connexins/metabolism , Animals , Channelopathies/genetics , Connexins/genetics , Gap Junctions/metabolism , Humans , Ion Channel Gating , Models, Molecular , Mutation/genetics
14.
Front Physiol ; 7: 1, 2016.
Article in English | MEDLINE | ID: mdl-26858649

ABSTRACT

Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.

15.
J Invest Dermatol ; 136(3): 574-583, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26777423

ABSTRACT

The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease.


Subject(s)
Calcium Channels/genetics , Connexins/genetics , Epidermis/metabolism , Genetic Predisposition to Disease , Keratitis/genetics , Animals , Cell Membrane Permeability/genetics , Connexin 26 , Gap Junctions/metabolism , Humans , Mice , Mice, Transgenic , Mutation, Missense , Water-Electrolyte Imbalance/genetics , Water-Electrolyte Imbalance/physiopathology
16.
Front Cell Neurosci ; 9: 267, 2015.
Article in English | MEDLINE | ID: mdl-26283912

ABSTRACT

Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or "leaky HCs." In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.

17.
J Invest Dermatol ; 135(5): 1338-1347, 2015 May.
Article in English | MEDLINE | ID: mdl-25625422

ABSTRACT

Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.


Subject(s)
Connexin 43/genetics , Connexins/genetics , Deafness/genetics , Gap Junctions/physiology , Ichthyosis/genetics , Ion Channels/physiology , Keratitis/genetics , Mutation/genetics , Adenosine Triphosphate/metabolism , Calcium/metabolism , Cell Membrane Permeability/physiology , Connexin 26 , Connexin 43/physiology , Connexins/physiology , Deafness/physiopathology , Gap Junctions/genetics , Genotype , HeLa Cells , Humans , Ichthyosis/physiopathology , Ion Channels/genetics , Keratitis/physiopathology , Phenotype
18.
Front Cell Neurosci ; 8: 249, 2014.
Article in English | MEDLINE | ID: mdl-25202238

ABSTRACT

Several studies have shown that connexin channels play an important role in retinal neural coding in nocturnal rodents. However, the contribution of these channels to signal processing in the retina of diurnal rodents remains unclear. To gain insight into this problem, we studied connexin expression and the contribution of connexin channels to the retinal light response in the diurnal rodent Octodon degus (degu) compared to rat, using in vivo ERG recording under scotopic and photopic light adaptation. Analysis of the degu genome showed that the common retinal connexins present a high degree of homology to orthologs expressed in other mammals, and expression of Cx36 and Cx43 was confirmed in degu retina. Cx36 localized mainly to the outer and inner plexiform layers (IPLs), while Cx43 was expressed mostly in cells of the retinal pigment epithelium. Under scotopic conditions, the b-wave response amplitude was strongly reduced by 18-ß-glycyrrhetinic acid (ß-GA) (-45.1% in degu, compared to -52.2% in rat), suggesting that connexins are modulating this response. Remarkably, under photopic adaptation, ß-GA increased the ERG b-wave amplitude in degu (+107.2%) while reducing it in rat (-62.3%). Moreover, ß-GA diminished the spontaneous action potential firing rate in ganglion cells (GCs) and increased the response latency of ON and OFF GCs. Our results support the notion that connexins exert a fine-tuning control of the retinal light response and have an important role in retinal neural coding.

19.
Biophys J ; 107(3): 599-612, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25099799

ABSTRACT

Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket-termed the IC pocket-located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability.


Subject(s)
Connexins/chemistry , Water/chemistry , Amino Acid Sequence , Binding Sites , Connexin 26 , Connexins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Water/metabolism
20.
Mol Biol Cell ; 23(17): 3299-311, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22787277

ABSTRACT

To identify motifs involved in oligomerization of the gap junction protein Cx26, we studied individual transmembrane (TM) domains and the full-length protein. Using the TOXCAT assay for interactions of isolated TM α-helices, we found that TM1, a Cx26 pore domain, had a strong propensity to homodimerize. We identified amino acids Val-37-Ala-40 (VVAA) as the TM1 motif required for homodimerization. Two deafness-associated Cx26 mutations localized in this region, Cx26V37I and Cx26A40G, differentially affected dimerization. TM1-V37I dimerized only weakly, whereas TM1-A40G did not dimerize. When the full-length mutants were expressed in HeLa cells, both Cx26V37I and Cx26A40G formed oligomers less efficiently than wild-type Cx26. A Cx26 cysteine substitution mutant, Cx26V37C formed dithiothreitol-sensitive dimers. Substitution mutants of Val-37 formed intercellular channels with reduced function, while mutants of Ala-40 did not form functional gap junction channels. Unlike wild-type Cx26, neither Cx26V37I nor Cx26A40G formed functional hemichannels in low extracellular calcium. Thus the VVAA motif of Cx26 is critical for TM1 dimerization, hexamer formation, and channel function. The differential effects of VVAA mutants on hemichannels and gap junction channels imply that inter-TM interactions can differ in unapposed and docked hemichannels. Moreover, Cx26 oligomerization appears dependent on transient TM1 dimerization as an intermediate step.


Subject(s)
Connexins/chemistry , Connexins/metabolism , Gap Junctions/metabolism , Cell Line, Tumor , Connexin 26 , Connexins/genetics , HeLa Cells , Humans , Ion Channels/metabolism , Mutation , Protein Multimerization , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL