Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Database (Oxford) ; 2024: 0, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752292

ABSTRACT

Mutational hotspots are DNA regions with an abnormally high frequency of genetic variants. Identifying whether a variant is located in a mutational hotspot is critical for determining the variant's role in disorder predisposition, development, and treatment response. Despite their significance, current databases on mutational hotspots are limited to the oncology domain. However, identifying mutational hotspots is critical for any disorder in which genetics plays a role. This is true for the world's leading cause of death: cardiac disorders. In this work, we present CardioHotspots, a literature-based database of manually curated hotspots for cardiac diseases. This is the only database we know of that provides high-quality and easily accessible information about hotspots associated with cardiac disorders. CardioHotspots is publicly accessible via a web-based platform (https://genomics-hub.pros.dsic.upv.es:3099/). Database URL: https://genomics-hub.pros.dsic.upv.es:3099/.


Subject(s)
Databases, Genetic , Heart Diseases , Mutation , Humans , Heart Diseases/genetics
2.
BMC Med Inform Decis Mak ; 23(Suppl 3): 256, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946154

ABSTRACT

BACKGROUND: Genomics-based clinical diagnosis has emerged as a novel medical approach to improve diagnosis and treatment. However, advances in sequencing techniques have increased the generation of genomics data dramatically. This has led to several data management problems, one of which is data dispersion (i.e., genomics data is scattered across hundreds of data repositories). In this context, geneticists try to remediate the above-mentioned problem by limiting the scope of their work to a single data source they know and trust. This work has studied the consequences of focusing on a single data source rather than considering the many different existing genomics data sources. METHODS: The analysis is based on the data associated with two groups of disorders (i.e., oncology and cardiology) accessible from six well-known genomic data sources (i.e., ClinVar, Ensembl, GWAS Catalog, LOVD, CIViC, and CardioDB). Two dimensions have been considered in this analysis, namely, completeness and concordance. Completeness has been evaluated at two levels. First, by analyzing the information provided by each data source with regard to a conceptual schema data model (i.e., the schema level). Second, by analyzing the DNA variations provided by each data source as related to any of the disorders selected (i.e., the data level). Concordance has been evaluated by comparing the consensus among the data sources regarding the clinical relevance of each variation and disorder. RESULTS: The data sources with the highest completeness at the schema level are ClinVar, Ensembl, and CIViC. ClinVar has the highest completeness at the data level data source for the oncology and cardiology disorders. However, there are clinically relevant variations that are exclusive to other data sources, and they must be considered in order to provide the best clinical diagnosis. Although the information available in the data sources is predominantly concordant, discordance among the analyzed data exist. This can lead to inaccurate diagnoses. CONCLUSION: Precision medicine analyses using a single genomics data source leads to incomplete results. Also, there are concordance problems that threaten the correctness of the genomics-based diagnosis results.


Subject(s)
Information Sources , Precision Medicine , Humans , Precision Medicine/methods , Genomics/methods , Genome , Medical Oncology
3.
BMC Bioinformatics ; 23(Suppl 11): 472, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352353

ABSTRACT

BACKGROUND: Precision medicine is a promising approach that has revolutionized disease prevention and individualized treatment. The DELFOS oracle is a model-driven genomics platform that aids clinicians in identifying relevant variations that are associated with diseases. In its previous version, the DELFOS oracle did not consider the high degree of variability of genomics data over time. However, changes in genomics data have had a profound impact on clinicians' work and pose the need for changing past, present, and future clinical actions. Therefore, our objective in this work is to consider changes in genomics data over time in the DELFOS oracle. METHODS: Our objective has been achieved through three steps. First, we studied the characteristics of each database from which the DELFOS oracle extracts data. Second, we characterized which genomics concepts of the conceptual schema that supports the DELFOS oracle change over time. Third, we updated the DELFOS Oracle so that it can manage the temporal dimension. To validate our approach, we carried out a use case to illustrate how the new version of the DELFOS oracle handles the temporal dimension. RESULTS: Three events can change genomics data, namely, the addition of a new variation, the addition of a new link between a variation and a phenotype, and the update of a link between a variation and a phenotype. These events have been linked to the entities of the conceptual model that are affected by them. Finally, a new version of the DELFOS oracle that can deal with the temporal dimension has been implemented. CONCLUSION: Huge amounts of genomics data that is associated with diseases change over time, impacting patients' diagnosis and treatment. Including this information in the DELFOS oracle added an extra layer of complexity, but using a model-driven based approach mitigated the cost of implementing the needed changes. The new version handles the temporal dimension appropriately and eases clinicians' work.


Subject(s)
Genomics , Precision Medicine , Genomics/methods , Phenotype
4.
BMC Bioinformatics ; 22(Suppl 13): 353, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34592923

ABSTRACT

BACKGROUND: Understanding the genome, with all of its components and intrinsic relationships, is a great challenge. Conceptual modeling techniques have been used as a means to face this challenge. The heterogeneity and idiosyncrasy of genomic use cases mean that conceptual modeling techniques are used to generate conceptual schemes that focus on too specific scenarios (i.e., they are species-specific conceptual schemes). Our research group developed two different conceptual schemes. The first one is the Conceptual Schema of the Human Genome, which is intended to improve Precision Medicine and genetic diagnosis. The second one is the Conceptual Schema of the Citrus Genome, which is intended to identify the genetic cause of relevant phenotypes in the agri-food field. METHODS: Our two conceptual schemes have been ontologically compared to identify their similarities and differences. Based on this comparison, several changes have been performed in the Conceptual Schema of the Human Genome in order to obtain the first version of a species-independent Conceptual Schema of the Genome. Identifying the different genome information items used in each genomic case study has been essential in achieving our goal. The changes needed to provide an expanded, more generic version of the Conceptual Schema of the Human Genome are analyzed and discussed. RESULTS: This work presents a new CS called the Conceptual Schema of the Genome that is ready to be adapted to any specific working genome-based context (i.e., species-independent). CONCLUSION: The generated Conceptual Schema of the Genome works as a global, generic element from which conceptual views can be created in order to work with any specific species. This first working version can be used in the human use case, in the citrus use case, and, potentially, in more use cases of other species.


Subject(s)
Genome , Genomics , Humans , Models, Theoretical , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL