Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Chembiochem ; 24(22): e202300094, 2023 11 16.
Article En | MEDLINE | ID: mdl-37548117

We have studied the adenosine binding specificities of two bacterial DNA methyltransferases, Taq methyltransferase (M.TaqI), and HhaI methyltransferase (M.HhaI). While they have similar cofactor binding pocket interactions, experimental data showed different specificity for novel S-nucleobase-l-methionine cofactors (SNMs; N=guanosyl, cytidyl, uridyl). Protein dynamics corroborate the experimental data on the cofactor specificities. For M.TaqI the specificity for S-adenosyl-l-methionine (SAM) is governed by the tight binding on the nucleoside part of the cofactor, while for M.HhaI the degree of freedom of the nucleoside chain allows the acceptance of other bases. The experimental data prove catalytically productive methylation by the M.HhaI binding pocket for all the SNMs. Our results suggest a new route for successful design of unnatural SNM analogues for methyltransferases as a tool for cofactor engineering.


Methyltransferases , Nucleosides , Nucleosides/metabolism , Methyltransferases/metabolism , Adenosine , DNA Methylation , Methionine , DNA/chemistry , S-Adenosylmethionine/metabolism
2.
J Am Chem Soc ; 142(26): 11324-11342, 2020 07 01.
Article En | MEDLINE | ID: mdl-32496764

Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.


Enzymes/chemistry , Enzymes/metabolism , Protein Engineering , Biocatalysis , Humans , Molecular Dynamics Simulation , Protein Conformation
3.
J Phys Chem B ; 123(45): 9584-9591, 2019 11 14.
Article En | MEDLINE | ID: mdl-31640343

HIV-1 protease (PR) is the viral protein responsible for virion maturation, and its mechanisms of action remain incompletely understood. PR is dimeric and contains two flexible, symmetry-related flaps, which act as a gate to inhibit access to the binding pocket and hold the polypeptide substrate in the binding pocket once bound. Wide flap opening, a conformational change assumed to be necessary for substrate binding, is a rare event in the closed and bound form. In this study, we use molecular dynamics (MD) simulations and advanced MD techniques including temperature acceleration and string method in collective variables to study the conformational changes associated with substrate unbinding of both wild-type and F99Y mutant PR. The F99Y mutation is shown via MD to decouple the closing of previously unrecognized distal pockets from substrate unbinding. To determine whether or not the F99Y mutation affects the energetic cost of wide flap opening, we use string method in collective variables to determine the minimum free-energy mechanism for wide flap opening in concert with distal pocket closing. The results indicate that the major energetic cost in flap opening is disengagement of the two flap-tip Ile50 residues from each other and is not affected by the F99Y mutation.


HIV Protease/metabolism , Binding Sites , Fusion Proteins, gag-pol/chemistry , Fusion Proteins, gag-pol/metabolism , HIV Protease/chemistry , HIV Protease/genetics , HIV-1/enzymology , Molecular Dynamics Simulation , Mutation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Thermodynamics
4.
Biochim Biophys Acta Biomembr ; 1860(7): 1452-1459, 2018 Jul.
Article En | MEDLINE | ID: mdl-29684332

Molecular dynamics simulations of a solvent-free coarse-grained lipid model are used to characterize the mechanisms by which lipid-bilayer hemifusion diaphragm (HD) intermediates relax, across a range of global compositions of negative intrinsic curvature (NIC) lipids and neutral-curvature lipids. At low concentrations of NIC lipids, rapid fission produces a double bilayer end state through a lateral diffusion-based mechanism enabled by spontaneous rim-pore defects. At moderately higher NIC lipid concentrations, rim pores are absent and stable leaflet three-junctions persist, revealing an HD relaxation mechanism entirely reliant on lipid flip-flop, and end states that are either stable fusion pores or stable HD's. These fusogenic systems exhibit dynamics highly dependent on NIC lipid concentration via an underlying sensitivity of flip-flop rates for neutral lipids on NIC lipid concentration. This work illustrates that HD dynamics may be altered through regulation of lipid composition in the immediate three-junction region. This work further highlights the potential role of flippases in biological fusion and the importance of lipid composition on fusion dynamics.


Lipid Bilayers/chemistry , Membrane Fusion , Diffusion , Molecular Dynamics Simulation
5.
J Chem Phys ; 147(13): 134903, 2017 Oct 07.
Article En | MEDLINE | ID: mdl-28987088

Though the hemifusion diaphragm (HD) is widely accepted as an intermediate in bilayer membrane fusion, lipid contributions toward HD stability and dynamics are still not fully understood. In this paper, we study large, binary, protein-free HD systems at varying compositions of negative intrinsic curvature (NIC) lipids using molecular dynamics (MD) simulations of a solvent-free coarse-grained lipid model. Under MD, initially created HDs are found to relax to three major end states depending on the composition and lipid intrinsic curvature. Low compositions of NIC lipids or weak intrinsic curvature result in double-bilayer end states, and moderate compositions of moderate to strong NIC lipids result in metastable fusion pores. Importantly, high compositions of moderate NIC lipids result in a metastable HD that persists beyond µs time scales. NIC lipids stabilize the HD by filling the junction core around the HD. Sorting of NIC lipids toward the three-junction region occurs in fused-endpoint systems, but no significant sorting was seen in systems that end in a double bilayer indicating that high line tension at the triple junction drives HD dissipation faster than sorting can enrich that junction enough to lower that line tension. The appearance of three end states dependent on the NIC lipid composition highlights the necessity of NIC lipids for non-leaky fusion.

6.
J Chem Phys ; 145(7): 074901, 2016 Aug 21.
Article En | MEDLINE | ID: mdl-27544120

We use a combination of coarse-grained molecular dynamics simulations and theoretical modeling to examine three-junctions in mixed lipid bilayer membranes. These junctions are localized defect lines in which three bilayers merge in such a way that each bilayer shares one monolayer with one of the other two bilayers. The resulting local morphology is non-lamellar, resembling the threefold symmetric defect lines in inverse hexagonal phases, but it regularly occurs during membrane fission and fusion events. We realize a system of junctions by setting up a honeycomb lattice, which in its primitive cell contains two hexagons and four three-line junctions, permitting us to study their stability as well as their line tension. We specifically consider the effects of lipid composition and intrinsic curvature in binary mixtures, which contain a fraction of negatively curved lipids in a curvature-neutral background phase. Three-junction stability results from a competition between the junction and an open edge, which arises if one of the three bilayers detaches from the other two. We show that the stable phase is the one with the lower defect line tension. The strong and opposite monolayer curvatures present in junctions and edges enhance the mole fraction of negatively curved lipids in junctions and deplete it in edges. This lipid sorting affects the two line tensions and in turn the relative stability of the two phases. It also leads to a subtle entropic barrier for the transition between junction and edge that is absent in uniform membranes.


Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Membranes/chemistry
...