Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-509178

ABSTRACT

Phosphodiesterase 12 (PDE12) is a negative regulator of the type 1 interferon (IFN) response and here we show that PDE12 inhibitors (lead compounds 63 and 17) are associated with increased RNAseL activity, are well tolerated at the therapeutic range and inhibit, both in vitro and in vivo, the replication of several RNA viruses including hepatitis C virus (HCV), dengue virus (DENV), West Nile Virus (WNV) and SARS-CoV-2.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-447308

ABSTRACT

There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), high titre binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) are induced. In addition, a strong and polyfunctional T cell response was measured in these booster regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

4.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
Preprint in English | medRxiv | ID: ppmedrxiv-21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21256571

ABSTRACT

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21253218

ABSTRACT

BackgroundNatural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. MethodsIn a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. ConclusionNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant. SummaryNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provided [≥] 85% protection against symptomatic and asymptomatic SARS-CoV-2 infection in healthcare workers, including against the B.1.1.7 variant. Single dose vaccination reduced symptomatic infection by 67%.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-437704

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. ImportanceSARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genetic material (genomes) can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less ineffective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By isolating viruses from these patients, we show that there is a 100-fold range in growth of even normal variants. Interestingly, by comparing this to the pattern seen with two Variants of Concern (UK and South African variants), we show that at least in cells the ability of the B.1.1.7 variant to grow is not substantially different to many of the previous variants.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20234369

ABSTRACT

BackgroundIt is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection. MethodsWe investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at Oxford University Hospitals, UK. Baseline antibody status was determined using anti-spike and/or anti-nucleocapsid IgG assays and staff followed for up to 30 weeks. We used Poisson regression to estimate the relative incidence of PCR-positive results and new symptomatic infection by antibody status, accounting for age, gender and changes in incidence over time. ResultsA total of 12219 HCWs participated and had anti-spike IgG measured, 11052 were followed up after negative and 1246 after positive antibody results including 79 who seroconverted during follow up. 89 PCR-confirmed symptomatic infections occurred in seronegative individuals (0.46 cases per 10,000 days at risk) and no symptomatic infections in those with anti-spike antibodies. Additionally, 76 (0.40/10,000 days at risk) anti-spike IgG seronegative individuals had PCR-positive tests in asymptomatic screening, compared to 3 (0.21/10,000 days at risk) seropositive individuals. Overall, positive baseline anti-spike antibodies were associated with lower rates of PCR-positivity (with or without symptoms) (adjusted rate ratio 0.24 [95%CI 0.08-0.76, p=0.015]). Rate ratios were similar using anti-nucleocapsid IgG alone or combined with anti-spike IgG to determine baseline status. ConclusionsPrior SARS-CoV-2 infection that generated antibody responses offered protection from reinfection for most people in the six months following infection. Further work is required to determine the long-term duration and correlates of post-infection immunity.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-20224824

ABSTRACT

BackgroundSARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. MethodsWe present 6 months of data from a longitudinal seroprevalence study of 3217 UK healthcare workers (HCWs). Serial measurements of IgG antibodies to SARS-CoV-2 nucleocapsid were obtained. Bayesian mixed linear models were used to investigate antibody waning and associations with age, gender, ethnicity, previous symptoms and PCR results. ResultsIn this cohort of working age HCWs, antibody levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post-first positive PCR test, before beginning to fall. Considering 452 IgG seropositive HCWs over a median of 121 days (maximum 171 days) from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. The estimated mean time to loss of a positive antibody result was 137 (95%CrI 127-148) days. We observed variation between individuals; higher maximum observed IgG titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum antibody levels, and increasing age and a positive PCR test undertaken for symptoms with longer antibody half-lives. ConclusionIgG antibody levels to SARS-CoV-2 nucleocapsid wane within months, and faster in younger adults and those without symptoms. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection. SummarySerially measured SARS-CoV-2 anti-nucleocapsid IgG titres from 452 seropositive healthcare workers demonstrate levels fall by half in 85 days. From a peak result, detectable antibodies last a mean 137 days. Levels fall faster in younger adults and following asymptomatic infection.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20205831

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test ("HAT") has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of [~]0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-20202929

ABSTRACT

A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-20159038

ABSTRACT

Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. Assay performance following mild/asymptomatic infection is unclear. We assessed IgG responses in asymptomatic healthcare workers with a high pre-test probability of Covid-19, e.g. 807/9292(8.9%) reported loss of smell/taste. The proportion reporting anosmia/ageusia increased at antibody titres below diagnostic thresholds for both an in-house ELISA and the Abbott Architect chemiluminescent microparticle immunoassay (CMIA): 424/903(47%) reported anosmia/ageusia with a positive ELISA, 59/387(13.2%) with high-negative titres, and 324/7943(4.1%) with low-negative results. Adjusting for the proportion of staff reporting anosmia/ageusia suggests the sensitivity of both assays is lower than previously reported: Oxford ELISA 90.8% (95%CI 86.1-92.1%) and Abbott CMIA 80.9% (77.5-84.3%). However, the sensitivity may be lower if some anosmia/ageusia in those with low-negative titres is Covid-19-associated. Samples from individuals with mild/asymptomatic infection should be included in SARS-CoV-2 immunoassay evaluations. Reporting equivocal SARS-CoV-2 antibody results should be considered.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-20135038

ABSTRACT

BackgroundPersonal protective equipment (PPE) and social distancing are designed to mitigate risk of occupational SARS-CoV-2 infection in hospitals. Why healthcare workers nevertheless remain at increased risk is uncertain. MethodsWe conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using nasopharyngeal PCR testing and immunoassays for IgG antibodies. A positive result by either modality determined a composite outcome. Risk-factors for Covid-19 were investigated using multivariable logistic regression. Results1083/9809(11.0%) staff had evidence of Covid-19 at some time and provided data on potential risk-factors. Staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.63 [95%CI 3.30-6.50]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (21.2% vs. 8.2% elsewhere) (aOR 2.49 [2.00-3.12]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.50 [1.05-2.15]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit (ICU) staff were relatively protected (0.46 [0.29-0.72]). Positive results were more likely in Black (1.61 [1.20-2.16]) and Asian (1.58 [1.34-1.86]) staff, independent of role or working location, and in porters and cleaners (1.93 [1.25-2.97]). Contact tracing around asymptomatic staff did not lead to enhanced case identification. 24% of staff/patients remained PCR-positive at [≥]6 weeks post-diagnosis. ConclusionsIncreased Covid-19 risk was seen in acute medicine, among Black and Asian staff, and porters and cleaners. A bundle of PPE-related interventions protected staff in ICU.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-134551

ABSTRACT

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFN{gamma} based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4+ and/or CD8+ epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8+ T cells than spike-specific CD8+ T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8+ to CD4+ T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

15.
Preprint in English | medRxiv | ID: ppmedrxiv-20105486

ABSTRACT

BackgroundLaboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. MethodsWe undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=111 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. ResultsWe identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected [≥]28 days post symptom onset, 0/143 (0%, 95%CI 0.0-2.5%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. ConclusionsvRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-20091694

ABSTRACT

IntroductionThe lack of approved specific therapeutic agents to treat COVID-19 associated with SARS coronavirus 2 (SARS-CoV-2) infection has led to the rapid implementation and/or randomised controlled trials of convalescent plasma therapy (CPT) in many countries including the UK. Effective CPT is likely to require high titres of neutralising antibody levels in convalescent donations. Understanding the relationship between functional neutralising antibodies and antibody levels to specific SARS-CoV-2 proteins in scalable assays will be crucial for the success of large-scale collection and use of convalescent plasma. We assessed whether neutralising antibody titres correlated with reactivity in a range of ELISA assays targeting the spike (S) protein, the main target for human immune response. MethodsBlood samples were collected from 52 individuals with a previous laboratory confirmed SARS-CoV-2 infection at least 28 days after symptom resolution. These were assayed for SARS-CoV-2 neutralising antibodies by native virus and lentiviral pseudotype assays, and for antibodies by four different ELISAs measuring antibody binding to different format of viral S proteins. ROC analysis was used to further identify sensitivity and specificity of selected assays to identify samples containing high neutralising antibody levels suitable for clinical use of convalescent plasma. ResultsAll samples contained SARS-CoV-2 antibodies, whereas neutralising antibody titres of greater than 1:20 were detected in 43 samples (83% of those tested) and >1:100 in 22 samples (42%). The best correlations were observed with EUROimmun IgG ELISA S/CO reactivity (Spearman Rho correlation co-efficient 0.88; p<0.001). Based on ROC analysis, EUROimmun would detect 60% of samples with titres of >1:100 with 100% specificity using a reactivity index of 9.1 (13/22). DiscussionRobust associations between virus neutralising antibody titres and reactivity in several ELISA-based antibody tests demonstrate their possible utility for scaled-up production of convalescent plasma containing potentially therapeutic levels of anti-SARS-CoV-2 neutralising antibodies.

17.
Preprint in English | medRxiv | ID: ppmedrxiv-20060467

ABSTRACT

BackgroundThe progression and geographical distribution of SARS coronavirus 2 (SARS-CoV-2) infection in the UK and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland between the 17th of March and the 18th of May to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression. AimTo determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic. MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study group comprised samples from 3,500 blood donors collected in Scotland between the 17th of March and 19th of May, 2020. Controls were collected from 100 donors in Scotland during 2019. ResultsAll samples collected on the 17th March, 2020 (n=500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in 6/500 donors from the 23th-26th of March. The number of samples containing neutralising antibodies did not significantly rise after the 5th-6th April until the end of the study on the 18th of May. We find that infections are concentrated in certain postcodes indicating that outbreaks of infection are extremely localised. In contrast, other areas remain comparatively untouched by the epidemic. ConclusionThese data indicate that sero-surveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic like the current SARS-CoV-2 outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL