ABSTRACT
The electronic properties of fluorosulfonyl isocyanate, FSO2NCO, were investigated by means of photoelectron spectroscopy and synchrotron based techniques. The first ionization potential occurs at 12.3 eV and was attributed to the ejection of electrons formally located at the π NCO molecular orbital (MO), with a contribution from nonbonding orbitals at the oxygen atoms of the SO2 group. The proposed interpretation of the photoelectron spectrum is consistent with related molecules reported previously and also with the prediction of OVGF (outer valence green function) and P3 (partial third order) calculations. The energy of the inner- and core-shell electrons was determined using X-ray absorption, measuring the total ion yield spectra, and the resonances before each ionization threshold were interpreted in terms of transitions to vacant molecular orbitals. The ionic fragmentation mechanisms in the valence energy region were studied using time-of-flight mass spectrometry as a function of the energy of the incident radiation. At 13 eV the M(+) was the only ion detected in the photoion-photoelectron-coincidence spectrum, while the FSO2(+) fragment, formed through the breaking of the S-N single bond, appears as the most intense fragment for energies higher than 15 eV. The photoion-photoion-photoelectron-coincidence spectra, taken at the inner- and core-levels energy regions, revealed several different fragmentation pathways, being the most important ones secondary decay after deferred charge separation mechanisms leading to the formation of the O(+)/S(+) and C(+)/O(+) pairs.
ABSTRACT
ClC(O)SSCl was prepared by an improved method by the reaction of [(CH(3))(2)CHOC(S)](2)S with SO(2)Cl(2) in hexane. The photoelectron spectra in the gas phase present four distinct regions, corresponding to ionizations from electrons formally located at the S, O, and Cl atoms and at the CâO bond. The vibrational IR and Raman spectra of the liquid were interpreted in terms of the most stable syn-gauche conformer (the OâC double bond syn with respect to the S-S single bond and the C-S single bond gauche with respect to the S-Cl single bond) in equilibrium with the less stable anti-gauche form, both occurring in two enantiomeric forms. The randomization process between the conformers was induced by broad-band UV-visible irradiation in matrix conditions, and several photoproducts were identified by FTIR spectroscopy. The experimental results were complemented by theoretical calculations.
ABSTRACT
The simultaneous evaluation of the PES and valence synchrotron photoionization studies complemented by the results of quantum chemical calculations offers unusually detailed insights into the valence ionization processes of small covalent molecules. Thus, methyl thiochloroformate, ClC(O)SCH(3), has been investigated by using results from both photoelectron spectroscopy (PES) and synchrotron radiation in the valence energy range. In an additional series of experiments, total ion yield (TIY) and photoelectron-photoion coincidence (PEPICO) spectra have been recorded. Furthermore, the relative yields for ionic fragments have been determined as a function of the photon energy. Vibronic structure has been observed in the TIY spectrum recorded in the synchrotron experiments. The photodissociation behavior of ClC(O)SCH(3) can be divided into two well-defined energy regions.