Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38860831

ABSTRACT

Measurement device independent quantum key distribution (MDI QKD) has attracted growing attention for its immunity to attacks at the measurement unit, but its unique structure limits the secret key rate. Utilizing the wavelength division multiplexing (WDM) technique and reducing error rates are effective strategies for enhancing the secret key rate. Reducing error rates often requires active feedback control of wavelengths using precise external references. However, for a multiwavelength laser, employing multiple references to stabilize each wavelength output places stringent demands on these references and significantly increases system complexity. Here, we demonstrate a stable, wavelength-tunable multiwavelength laser with an output wavelength ranging from 1270 to 1610 nm. Through precise temperature control and stable drive current, we passively lock the laser wavelength, achieving remarkable wavelength stability. This significantly reduce the error rate, leading to an almost doubling of the secret key rate compared to previous experiments. Furthermore, the exceptional wavelength stability offered by our multiwavelength laser, combined with the WDM technique, has further boosted the secret key rate of MDI QKD. With a wide wavelength tuning range of 5.1 nm, our multiwavelength laser facilitates flexible operation across multiple dense wavelength division multiplexing channels. Coupled with high wavelength stability and multiple wavelength outputs simultaneously, this laser offers a promising solution for a high-rate MDI QKD system.

2.
Opt Lett ; 47(12): 3111-3114, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35709063

ABSTRACT

The quantum-classical coexistence can be implemented based on wavelength division multiplexing (WDM), but due to Raman noise, the wavelength spacing between quantum and classical signals and launch power from classical channels are restricted. Space division multiplexing (SDM) can now be availably achieved by multicore fiber (MCF) to reduce Raman noise, thereby loosening the restriction for coexistence in the same band and obtaining a high communication capacity. In this paper, we realize the quantum-classical coexistence over a 7-core MCF. Based on the SDM, the highest launch power of 25 dBm is achieved which has been extended nearly 19 times in previous work. Moreover, both the quantum and classical channels are allocated in the C-band and the minimum wavelength spacing between them is only 1.6 nm. The coexistence system eliminates the need for adding a narrowband filter.

3.
Opt Lett ; 46(24): 6099-6102, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34913926

ABSTRACT

The demand for the integration of quantum key distribution (QKD) and classical optical communication in the same optical fiber medium greatly increases as fiber resources and the flexibility of practical applications are taken into consideration. To satisfy the needs of the mass deployment of ultra-high power required for classical optical networks integrating QKD, we implement the discrete variable quantum key distribution (DV-QKD) under up to 25 dBm launch power from classical channels over 75 km on an ultra-low-loss (ULL) fiber by combining a finite-key security analysis method with the noise model of classical signals. To the best of our knowledge, this is the highest power launched by classical signals on the coexistence of DV-QKD and classical communication. The results exhibit the feasibility and tolerance of our QKD system for use in ultra-high-power classical communications.

4.
Opt Lett ; 46(11): 2573-2576, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061059

ABSTRACT

There is an increasing demand for multiplexing of quantum key distribution with optical communications in single fiber in consideration of high costs and practical applications in the metropolitan optical network. Here, we realize the integration of quantum key distribution and an optical transport network of 80 Gbps classical data at 15 dBm launch power over 50 km of the widely used standard (G.652 Recommendation of the International Telecom Union Telecom Standardization Sector) telecom fiber. A secure key rate of 11 Kbps over 20 km is obtained. By tolerating a high classical optical power up to 18 dBm of 160 Gbps classical data on single-mode fiber, our result shows the potential and tolerance of quantum key distribution being used in future large capacity transmission systems, such as metropolitan area networks and data centers. The quantum key distribution system is stable, practical, and insensitive to the polarization disturbance of channels by using a phase coding system based on a Faraday-Michelson interferometer. We also discuss the fundamental limit for quantum key distribution performance in the multiplexing environment.

5.
Opt Lett ; 45(21): 6038-6041, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33137063

ABSTRACT

We investigate quantum random number generation based on backward spontaneous Raman scattering in standard single-mode fiber, where the randomness of photon wavelength superposition and arrival time is simultaneously utilized. The experiment uses four avalanche photodiodes working in gated Geiger mode to detect backward Raman scattering photons from four different wavelength channels and a time-to-digital converter placed behind the detectors to record their arrival time. Both information of the wavelength and arrival time interval of photons from different channels are applied to generate random bits. Due to the independence of these two entropy sources, the random number resource of the present system is fully utilized. Five-bit raw data can be obtained for every effective click, which contains 2.87-bit min-entropy. To obtain the optimal generation rate of random bits, appropriate pump power and fiber length are adopted. The post-processing method by the SHA-256 hashing algorithm is used to remove the bias of the raw data, after which the final random bit sequences pass the NIST statistical test.

SELECTION OF CITATIONS
SEARCH DETAIL
...