Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 363: 121409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861884

ABSTRACT

The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Microalgae , Pesticides , Soil Pollutants , Microalgae/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Pesticides/metabolism , India , Soil/chemistry
2.
Environ Sci Pollut Res Int ; 31(9): 12748-12779, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265587

ABSTRACT

The textile industry is responsible for producing large volumes of wastewater that contain a wide variety of dye compounds. This poses a significant environmental hazard and risks harming both ecosystems and living organisms. This review study explores the advancements in adsorption research for dye removal, with a particular emphasis on the development of various adsorbents. The article provides detailed insights into the toxicity and classification of dyes, different treatment techniques, and the characteristics of numerous adsorbents, with special attention to layered double hydroxides (LDH) and clay minerals. A comprehensive list of adsorbents, encompassing natural materials, agricultural by-products, industrial waste, and activated carbon, is discussed for effective removal of different dyes. Furthermore, the review extensively examines the influence of various adsorption variables, such as pH, initial dye concentration, adsorbent dosage, temperature, contact time, ionic strength, and pore volume of the adsorbent. Additionally, the application of response surface methodology for optimizing adsorption variables is elucidated. Commonly, electrostatic attraction, π-π interactions, n-π interactions, van der Waals forces, H-bonding, and pore diffusion play a major role in adsorption mechanism. The review also found that LDH can eliminate a wide range of dyes from wastewater, achieving excellent uptake capacities often exceeding 500 mg/g, with a removal efficiency of 99%. The Langmuir isotherm and pseudo-second-order kinetic equations gave the best fit to most of the adsorption data. Overall, this review serves as a valuable resource for researchers and practitioners seeking sustainable solutions to address the environmental challenges posed by textile dye contamination.


Subject(s)
Wastewater , Water Pollutants, Chemical , Clay , Ecosystem , Hydroxides/chemistry , Coloring Agents/chemistry , Minerals , Textiles , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
4.
Environ Sci Pollut Res Int ; 25(30): 30236-30254, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30155633

ABSTRACT

The adsorption of crystal violet (CV) and malachite green (MG) dyes using carbon-coated Zn-Al-layered double hydroxide (C-Zn-Al LDH) was investigated in this work. The characterisation of both Zn-Al LDH and C-Zn-Al LDH was performed using XRD, SEM, TEM, EDX, XPS, FTIR, BET and TGA. The results indicated that carbon particles were effectively coated on Zn-Al LDH surface. The average total pore volume and pore diameter of C-Zn-Al LDH were observed as 0.007 cc/g and 3.115 nm. The impact of parameters like initial dye concentration, pH and adsorbent dosage on the dye removal efficiency was confirmed by carrying out Box-Behnken design experiments. Langmuir isotherm was well suited for both CV and MG adsorption among other isotherm models. The adsorption capacity was maximally obtained as 129.87 and 126.58 mg/g for CV and MG respectively. Pseudo-second order fits the adsorption kinetics than any other kinetic models for both the dyes. The thermodynamic study indicates that the adsorption process of CV was exothermic, whereas for MG was endothermic. Electrostatic attraction, H-bonding, n-π and π- π interactions were mainly influenced in the adsorption process. This study concludes that C-Zn-Al LDH is an efficient adsorbent for the CV and MG dye removal from aqueous solutions. Graphical abstract ᅟ Graphical abstract contains text below the minimum required font size of 6pts inside the artwork, and there is no sufficient space available for the text to be enlarged. Please provide replacement figure file.Graphical abstract contains text is rewritten with the maximum required font size inside the artwork and provided sufficient space between the text which is enlarged.The new Graphical abstract is attached as an image in the attachment file for your further usage.


Subject(s)
Aluminum , Carbon , Coloring Agents/chemistry , Hydroxides , Water Pollutants, Chemical/chemistry , Water Purification/methods , Zinc , Adsorption , Filtration , Gentian Violet/chemistry , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Rosaniline Dyes/chemistry , Thermodynamics , Water/chemistry
5.
Ultrason Sonochem ; 49: 175-189, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30146468

ABSTRACT

Textile dyes pose a serious threat in terms of water pollution due to its complex aromatic structures and poor degradability. In order to reduce the toxic effects of Crystal Violet (CV) and Methylene Blue (MB), an ultrasonic-assisted dye adsorption using urchin like α-MnO2 nanostructures was studied. The adsorbent was synthesised by hydrothermal method at low-temperature. The crystallinity and morphology were determined to investigate the growth mechanism of α-MnO2 nanourchins which consists of two main stages. The initial stage includes the formation of α-MnO2 microspheres followed by the epitaxial growth of nanoneedles on to the surface of them. The α-MnO2 was characterised by BET, XRD, FT-IR, XPS, SEM, TEM and TGA. At 5.6, the point of zero charge of α-MnO2 nanostructures was determined. The total pore volume and average pore radius were confirmed to be 4.751 × 10-2 cc/g and 10.99 Šrespectively from the BET analysis. Batch adsorption experiments were performed to investigate the effect of pH, adsorbent dosage, sonication time, initial dye concentration, temperature, ultrasonic frequency and power. The adsorption mechanism was studied using several isotherm and kinetic models. The adsorption data of CV and MB at equilibrium was observed to adopt the Langmuir isotherm model and pseudo-second order kinetic model. The maximum adsorption capacities for CV and MB were found to be 5882.3 and 5000 mg/g respectively. The thermodynamic study predicted that the process was exothermic for CV and endothermic for MB. The effects of competitive ions, ionic strength and humic acid on the uptake of both the dyes were also investigated. And finally, the reusability of recovered α-MnO2 after dye adsorption was studied up to five cycles for its potential industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL