Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Commun ; 15(1): 318, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38182620

The transcriptional antisilencer VirB acts as a master regulator of virulence gene expression in the human pathogen Shigella flexneri. It binds DNA sequences (virS) upstream of VirB-dependent promoters and counteracts their silencing by the nucleoid-organizing protein H-NS. However, its precise mode of action remains unclear. Notably, VirB is not a classical transcription factor but related to ParB-type DNA-partitioning proteins, which have recently been recognized as DNA-sliding clamps using CTP binding and hydrolysis to control their DNA entry gate. Here, we show that VirB binds CTP, embraces DNA in a clamp-like fashion upon its CTP-dependent loading at virS sites and slides laterally on DNA after clamp closure. Mutations that prevent CTP-binding block VirB loading in vitro and abolish the formation of VirB nucleoprotein complexes as well as virulence gene expression in vivo. Thus, VirB represents a CTP-dependent molecular switch that uses a loading-and-sliding mechanism to control transcription during bacterial pathogenesis.


DNA , Shigella flexneri , Humans , Shigella flexneri/genetics , Virulence/genetics , Hydrolysis , Gene Expression
2.
Nat Microbiol ; 7(9): 1442-1452, 2022 09.
Article En | MEDLINE | ID: mdl-35953658

Diadenosine tetraphosphate (Ap4A) is a putative second messenger molecule that is conserved from bacteria to humans. Nevertheless, its physiological role and the underlying molecular mechanisms are poorly characterized. We investigated the molecular mechanism by which Ap4A regulates inosine-5'-monophosphate dehydrogenase (IMPDH, a key branching point enzyme for the biosynthesis of adenosine or guanosine nucleotides) in Bacillus subtilis. We solved the crystal structure of BsIMPDH bound to Ap4A at a resolution of 2.45 Å to show that Ap4A binds to the interface between two IMPDH subunits, acting as the glue that switches active IMPDH tetramers into less active octamers. Guided by these insights, we engineered mutant strains of B. subtilis that bypass Ap4A-dependent IMPDH regulation without perturbing intracellular Ap4A pools themselves. We used metabolomics, which suggests that these mutants have a dysregulated purine, and in particular GTP, metabolome and phenotypic analysis, which shows increased sensitivity of B. subtilis IMPDH mutant strains to heat compared with wild-type strains. Our study identifies a central role for IMPDH in remodelling metabolism and heat resistance, and provides evidence that Ap4A can function as an alarmone.


Bacillus subtilis , Dinucleoside Phosphates , Guanosine Triphosphate
3.
Nat Commun ; 13(1): 2857, 2022 05 23.
Article En | MEDLINE | ID: mdl-35606361

Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum. In archaea, the adaptor protein CheF resides at the cytoplasmic face of the archaeal C-ring formed by the proteins ArlCDE and interacts with phosphorylated CheY. While the mechanism of CheY binding to the C-ring is well-studied in bacteria, the role of CheF in archaea remains enigmatic and mechanistic insights are absent. Here, we have determined the atomic structures of CheF alone and in complex with activated CheY by X-ray crystallography. CheF forms an elongated dimer with a twisted architecture. We show that CheY binds to the C-terminal tail domain of CheF leading to slight conformational changes within CheF. Our structural, biochemical and genetic analyses reveal the mechanistic basis for CheY binding to CheF and allow us to propose a model for rotational switching of the archaellum.


Bacterial Proteins , Escherichia coli Proteins , Archaea/metabolism , Bacterial Proteins/metabolism , Chemotaxis/physiology , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Flagella/metabolism , Methyl-Accepting Chemotaxis Proteins/metabolism , Phosphorylation , Protein Binding
4.
Mol Cell ; 81(19): 3992-4007.e10, 2021 10 07.
Article En | MEDLINE | ID: mdl-34562373

ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.


Bacterial Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial , Cytidine Triphosphate/metabolism , DNA, Bacterial/metabolism , Myxococcus xanthus/enzymology , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Hydrolysis , Mutation , Myxococcus xanthus/genetics , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Time Factors
5.
Nature ; 565(7741): 650-653, 2019 01.
Article En | MEDLINE | ID: mdl-30651637

Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses1,2. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway3. Here we show that one of the 20 maize-encoded kiwellins (ZmKWL1) specifically blocks the catalytic activity of Cmu1. ZmKWL1 hinders substrate access to the active site of Cmu1 through intimate interactions involving structural features that are specific to fungal Cmu1 orthologues. Phylogenetic analysis suggests that plant kiwellins have a versatile scaffold that can specifically counteract pathogen effectors such as Cmu1. We reveal the biological activity of a member of the kiwellin family, a widely conserved group of proteins that have previously been recognized only as important human allergens.


Antigens, Plant/metabolism , Plant Diseases/microbiology , Ustilago/metabolism , Ustilago/pathogenicity , Virulence Factors/metabolism , Zea mays/metabolism , Zea mays/microbiology , Chorismate Mutase/antagonists & inhibitors , Chorismate Mutase/chemistry , Chorismate Mutase/metabolism , Chorismic Acid/metabolism , Models, Molecular , Phylogeny , Plant Diseases/immunology , Salicylic Acid/immunology , Ustilago/enzymology , Zea mays/immunology
6.
J Proteome Res ; 17(5): 1794-1800, 2018 05 04.
Article En | MEDLINE | ID: mdl-29619829

Hydrogen-deuterium exchange (HDx) associated with mass spectrometry (MS) is emerging as a powerful tool to provide conformational information about membrane proteins. Unfortunately, as for X-ray diffraction and NMR, HDx performed on reconstituted in vitro systems might not always reflect the in vivo environment. Outer-membrane vesicles naturally released by Escherichia coli were used to carry out analysis of native OmpF through HDx-MS. A new protocol compatible with HDx analysis that avoids hindrance from the lipid contents was setup. The extent of deuterium incorporation was in good agreement with the X-ray diffraction data of OmpF as the buried ß-barrels incorporated a low amount of deuterium, whereas the internal loop L3 and the external loops incorporated a higher amount of deuterium. Moreover, the kinetics of incorporation clearly highlights that peptides segregate well in two distinct groups based exclusively on a trimeric organization of OmpF in the membrane: peptides presenting fast kinetics of labeling are facing the complex surrounding environment, whereas those presenting slow kinetics are located in the buried core of the trimer. The data show that HDx-MS applied to a complex biological system is able to reveal solvent accessibility and spatial arrangement of an integral outer-membrane protein complex.


Bacterial Proteins/chemistry , Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Porins/chemistry , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Kinetics , Protein Conformation
7.
Sci Rep ; 8(1): 2195, 2018 02 01.
Article En | MEDLINE | ID: mdl-29391580

The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ (SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric regulation by pppGpp, but structural and mechanistic insights into RelP lack behind. Here we present a structural and mechanistic characterization of RelP. In stark contrast to RelQ, RelP is not allosterically regulated by pppGpp and displays a different enzyme kinetic behavior. This discrepancy is evoked by different conformational properties of the guanosine-substrate binding site (G-Loop) of both proteins. Our study shows how minor structural divergences between close homologues result in new functional features during the course of molecular evolution.


Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanosine Tetraphosphate/metabolism , Ligases/chemistry , Ligases/metabolism , Allosteric Regulation , Binding Sites , Substrate Specificity
...