Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters











Publication year range
1.
Dev Cell ; 59(18): 2460-2476.e10, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38942017

ABSTRACT

Recent advances in human genetics have shed light on the genetic factors contributing to inflammatory diseases, particularly Crohn's disease (CD), a prominent form of inflammatory bowel disease. Certain risk genes associated with CD directly influence cytokine biology and cell-specific communication networks. Current CD therapies primarily rely on anti-inflammatory drugs, which are inconsistently effective and lack strategies for promoting epithelial restoration and mucosal balance. To understand CD's underlying mechanisms, we investigated the link between CD and the FGFR1OP gene, which encodes a centrosome protein. FGFR1OP deletion in mouse intestinal epithelial cells disrupted crypt architecture, resulting in crypt loss, inflammation, and fatality. FGFR1OP insufficiency hindered epithelial resilience during colitis. FGFR1OP was crucial for preserving non-muscle myosin II activity, ensuring the integrity of the actomyosin cytoskeleton and crypt cell adhesion. This role of FGFR1OP suggests that its deficiency in genetically predisposed individuals may reduce epithelial renewal capacity, heightening susceptibility to inflammation and disease.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Myosin Type II , Animals , Mice , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Myosin Type II/metabolism , Myosin Type II/genetics , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Colitis/genetics , Centrosome/metabolism , Humans , Cell Adhesion , Mice, Inbred C57BL , Crohn Disease/metabolism , Crohn Disease/pathology , Crohn Disease/genetics , Actomyosin/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics
2.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Mice , Gastrointestinal Microbiome/immunology , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Intestines/immunology , Macrophages/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice, Knockout , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics
3.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569016

ABSTRACT

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Subject(s)
Alzheimer Disease , Microglia , Humans , Mice , Animals , Microglia/metabolism , Antibodies/metabolism , Receptors, Cell Surface/metabolism , Amyloid/metabolism , Disease Models, Animal , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Leukocytes/metabolism , Mice, Transgenic , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
Proc Natl Acad Sci U S A ; 121(19): e2321836121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687788

ABSTRACT

Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.


Subject(s)
Citrobacter rodentium , Clostridioides difficile , Enterobacteriaceae Infections , Gastrointestinal Microbiome , Interleukin-22 , Mice, Knockout , Animals , Mice , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control
5.
Immunol Rev ; 323(1): 107-117, 2024 May.
Article in English | MEDLINE | ID: mdl-38563448

ABSTRACT

Group 1 innate lymphoid cells (ILCs), comprising ILC1s and natural killer cells (NK cells), belong to a large family of developmentally related innate lymphoid cells that lack rearranged antigen-specific receptors. NK cells and ILC1s both require the transcription factor T-bet for lineage commitment but additionally rely on Eomes and Hobit, respectively, for their development and effector maturation programs. Both ILC1s and NK cells are essential for rapid responses against infections and mediate cancer immunity through production of effector cytokines and cytotoxicity mediators. ILC1s are enriched in tissues and hence generally considered tissue resident cells whereas NK cells are often considered circulatory. Despite being deemed different cell types, ILC1s and NK cells share many common features both phenotypically and functionally. Recent studies employing single cell RNA sequencing (scRNA-seq) technology have exposed previously unappreciated heterogeneity in group 1 ILCs and further broaden our understanding of these cells. Findings from these studies imply that ILC1s in different tissues and organs share a common signature but exhibit some unique characteristics, possibly stemming from tissue imprinting. Also, data from recent fate mapping studies employing Hobit, RORγt, and polychromic reporter mice have greatly advanced our understanding of the developmental and effector maturation programs of these cells. In this review, we aim to outline the fundamental traits of mouse group 1 ILCs and explore recent discoveries related to their developmental programs, phenotypic heterogeneity, plasticity, and transcriptional regulation.


Subject(s)
Cell Plasticity , Gene Expression Regulation , Immunity, Innate , Killer Cells, Natural , Animals , Humans , Cell Plasticity/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Differentiation , Cell Lineage/genetics , Transcription, Genetic , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism
6.
Nat Immunol ; 25(1): 77-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049581

ABSTRACT

Intestinal intraepithelial lymphocytes (IELs) exhibit prompt innate-like responses to microenvironmental cues and require strict control of effector functions. Here we showed that Aiolos, an Ikaros zinc-finger family member encoded by Ikzf3, acted as a regulator of IEL activation. Ikzf3-/- CD8αα+ IELs had elevated expression of NK receptors, cytotoxic enzymes, cytokines and chemokines. Single-cell RNA sequencing of Ikzf3-/- and Ikzf3+/+ IELs showed an amplified effector machinery in Ikzf3-/- CD8αα+ IELs compared to Ikzf3+/+ counterparts. Ikzf3-/- CD8αα+ IELs had increased responsiveness to interleukin-15, which explained a substantial part, but not all, of the observed phenotypes. Aiolos binding sites were close to those for the transcription factors STAT5 and RUNX, which promote interleukin-15 signaling and cytolytic programs, and Ikzf3 deficiency partially increased chromatin accessibility and histone acetylation in these regions. Ikzf3 deficiency in mice enhanced susceptibility to colitis, underscoring the relevance of Aiolos in regulating the effector function in IELs.


Subject(s)
Intraepithelial Lymphocytes , Transcription Factors , Animals , Mice , CD8 Antigens/metabolism , Interleukin-15/metabolism , Intestinal Mucosa/metabolism , Intraepithelial Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Cell Rep ; 42(4): 112293, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36952346

ABSTRACT

Demyelination is a hallmark of multiple sclerosis, leukoencephalopathies, cerebral vasculopathies, and several neurodegenerative diseases. The cuprizone mouse model is widely used to simulate demyelination and remyelination occurring in these diseases. Here, we present a high-resolution single-nucleus RNA sequencing (snRNA-seq) analysis of gene expression changes across all brain cells in this model. We define demyelination-associated oligodendrocytes (DOLs) and remyelination-associated MAFBhi microglia, as well as astrocytes and vascular cells with signatures of altered metabolism, oxidative stress, and interferon response. Furthermore, snRNA-seq provides insights into how brain cell types connect and interact, defining complex circuitries that impact demyelination and remyelination. As an explicative example, perturbation of microglia caused by TREM2 deficiency indirectly impairs the induction of DOLs. Altogether, this study provides a rich resource for future studies investigating mechanisms underlying demyelinating diseases.


Subject(s)
Demyelinating Diseases , Remyelination , Animals , Mice , Demyelinating Diseases/metabolism , Transcriptome/genetics , Brain/metabolism , Oligodendroglia/metabolism , Microglia/metabolism , Cuprizone/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Myelin Sheath/metabolism
8.
Immunity ; 56(5): 1027-1045.e8, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36791722

ABSTRACT

Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.


Subject(s)
Macrophages , Microglia , Mice , Animals , Microglia/metabolism , Macrophages/metabolism , Integrases/genetics , Integrases/metabolism , Brain/metabolism
9.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36801011

ABSTRACT

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Subject(s)
Ferroptosis , Intraepithelial Lymphocytes , Animals , Mice , Intraepithelial Lymphocytes/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Oxidative Stress , Hydrocarbons
11.
Nat Immunol ; 24(3): 545-557, 2023 03.
Article in English | MEDLINE | ID: mdl-36658241

ABSTRACT

The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-ß signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.


Subject(s)
Dementia , Subacute Sclerosing Panencephalitis , Animals , Humans , Mice , Brain/metabolism , Dementia/metabolism , Dementia/pathology , Membrane Glycoproteins/metabolism , Microglia/metabolism , Receptors, Immunologic/metabolism , Subacute Sclerosing Panencephalitis/metabolism , Subacute Sclerosing Panencephalitis/pathology
12.
Int Immunol ; 35(3): 107-121, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36409583

ABSTRACT

Dendritic cells (DCs) express major histocompatibility complex class II (MHC-II) and are best known for proficiently presenting antigens to T cells, thereby eliciting specific adaptive T cell responses. Moreover, conventional DCs (cDCs) are specifically adept at handling intestinal antigens. Relatively recent discoveries and investigations have proven the existence of a new group of innate lymphocytes that reside in tissues like the intestine. They lack specific antigen receptors and can express MHC-II. These group 3 innate lymphoid cells (ILC3s) comprise a subset of heterogeneous innate lymphocytes that mirror the phenotype and functions of T-helper cells and act in the first line of defense. Considering that ILC3s are crucial for maintaining homeostasis of the intestinal mucosa and are found in niches alongside DCs, we herein describe the roles played by cDCs and ILC3s in the gut, highlighting the most recent studies. We discuss how these cells are alike and differ, constantly pointing out the thin, blurry line that separates cDCs and ILC3s.


Subject(s)
Immunity, Innate , Lymphocytes , Dendritic Cells , Histocompatibility Antigens Class II , Intestinal Mucosa
13.
Proc Natl Acad Sci U S A ; 119(46): e2215528119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343258

ABSTRACT

Group 2 innate lymphoid cells (ILC2) are innate counterparts of T helper 2 (Th2) cells that maintain tissue homeostasis and respond to injuries through rapid interleukin (IL)-5 and IL-13 secretion. ILC2s depend on availability of arginine and branched-chain amino acids for sustaining cellular fitness, proliferation, and cytokine secretion in both steady state and upon activation. However, the contribution of amino acid transporters to ILC2 functions is not known. Here, we found that ILC2s selectively express Slc7a8, encoding a transporter for arginine and large amino acids. Slc7a8 was expressed in ILC2s in a tissue-specific manner in steady state and was further increased upon activation. Genetic ablation of Slc7a8 in lymphocytes reduced the frequency of ILC2s, suppressed IL-5 and IL-13 production upon stimulation, and impaired type 2 immune responses to helminth infection. Consistent with this, Slc7a8-deficient ILC2s also failed to induce cytokine production and recruit eosinophils in a model of allergic lung inflammation. Mechanistically, reduced amino acid availability due to Slc7a8 deficiency led to compromised mitochondrial oxidative phosphorylation, as well as impaired activation of mammalian target of rapamycin and c-Myc signaling pathways. These findings identify Slc7a8 as a key supplier of amino acids for the metabolic programs underpinning fitness and activation of ILC2s.


Subject(s)
Immunity, Innate , Lymphocytes , Interleukin-13/genetics , Amino Acids , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Homeostasis , Arginine , Cytokines/metabolism , Interleukin-33 , Lung/metabolism
14.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36306735

ABSTRACT

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Subject(s)
Alzheimer Disease , Microglia , Animals , Mice , Humans , Microglia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Plaque, Amyloid/metabolism , Brain/metabolism , Disease Models, Animal , Syk Kinase/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
15.
Proc Natl Acad Sci U S A ; 119(23): e2204557119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35653568

ABSTRACT

C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.


Subject(s)
Eosinophils , Receptors, Aryl Hydrocarbon , Receptors, Cell Surface , Eosinophilia/therapy , Food Hypersensitivity/therapy , Immunomodulation , Intestine, Small , Leukocyte Count , Ligands , Receptors, Aryl Hydrocarbon/genetics
16.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34880136

ABSTRACT

Identification of type 1 innate lymphoid cells (ILC1s) has been problematic. The transcription factor Hobit encoded by Zfp683 has been proposed as a major driver of ILC1 programs. Using Zfp683 reporter mice, we showed that correlation of Hobit expression with ILC1s is tissue- and context-dependent. In liver and intestinal mucosa, Zfp683 expression correlated well with ILC1s; in salivary glands, Zfp683 was coexpressed with the natural killer (NK) master transcription factors Eomes and TCF1 in a unique cell population, which we call ILC1-like NK cells; during viral infection, Zfp683 was induced in conventional NK cells of spleen and liver. The impact of Zfp683 deletion on ILC1s and NK cells was also multifaceted, including a marked decrease in granzyme- and interferon-gamma (IFNγ)-producing ILC1s in the liver, slightly fewer ILC1s and more Eomes+ TCF1+ ILC1-like NK cells in salivary glands, and only reduced production of granzyme B by ILC1 in the intestinal mucosa. NK cell-mediated control of viral infection was unaffected. We conclude that Hobit has two major impacts on ILC1s: It sustains liver ILC1 numbers, while promoting ILC1 functional maturation in other tissues by controlling TCF1, Eomes, and granzyme expression.


Subject(s)
Immunity, Cellular/physiology , Immunity, Innate/physiology , Lymphocyte Subsets/classification , Lymphocyte Subsets/physiology , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Antigens, CD , Biomarkers , Gene Deletion , Gene Expression Regulation/physiology , Granzymes/genetics , Granzymes/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Liver/metabolism , Membrane Proteins/genetics , Mice , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , RNA-Seq , T-Box Domain Proteins/genetics , Transcription Factors/genetics
17.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083442

ABSTRACT

Lymphoid tissue inducer (LTi)-like cells are tissue resident innate lymphocytes that rapidly secrete cytokines that promote gut epithelial integrity and protect against extracellular bacterial infections.Here, we report that the retention of LTi-like cells in conventional solitary intestinal lymphoid tissue (SILT) is essential for controlling LTi-like cell function and is maintained by expression of the chemokine receptor CXCR5. Deletion of Cxcr5 functionally unleashed LTi-like cells in a cell intrinsic manner, leading to uncontrolled IL-17 and IL-22 production. The elevated production of IL-22 in Cxcr5-deficient mice improved gut barrier integrity and protected mice during infection with the opportunistic pathogen Clostridium difficile Interestingly, Cxcr5-/- mice developed LTi-like cell aggregates that were displaced from their typical niche at the intestinal crypt, and LTi-like cell hyperresponsiveness was associated with the local formation of this unconventional SILT. Thus, LTi-like cell positioning within mucosa controls their activity via niche-specific signals that temper cytokine production during homeostasis.


Subject(s)
Immunity, Innate , Interleukin-17/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Lymphocytes/immunology , Receptors, CXCR5/immunology , Animals , Gene Deletion , Interleukin-17/genetics , Interleukins/genetics , Intestinal Mucosa/cytology , Lymphocytes/cytology , Mice , Mice, Knockout , Receptors, CXCR5/genetics , Interleukin-22
18.
Science ; 373(6553)2021 07 23.
Article in English | MEDLINE | ID: mdl-34083450

ABSTRACT

The meninges contain adaptive immune cells that provide immunosurveillance of the central nervous system (CNS). These cells are thought to derive from the systemic circulation. Through single-cell analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis. B cells reach the meninges from the calvaria through specialized vascular connections. This calvarial-meningeal path of B cell development may provide the CNS with a constant supply of B cells educated by CNS antigens. Conversely, we show that a subset of antigen-experienced B cells that populate the meninges in aging mice are blood-borne. These results identify a private source for meningeal B cells, which may help maintain immune privilege within the CNS.


Subject(s)
B-Lymphocyte Subsets/physiology , B-Lymphocytes/physiology , Bone Marrow Cells/physiology , Central Nervous System/immunology , Dura Mater/cytology , Lymphopoiesis , Meninges/cytology , Meninges/immunology , Skull/anatomy & histology , Aging , Animals , B-Lymphocyte Subsets/immunology , Cell Movement , Central Nervous System/physiology , Dura Mater/immunology , Fibroblasts/physiology , Homeostasis , Immune Privilege , Mice , Plasma Cells/physiology , Single-Cell Analysis
19.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33446504

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid ß (Aß). Alzheimer's disease (AD) risk is associated with the TREM2R47H variant, which impairs ligand binding and consequently microglia responses to Aß pathology. Here, we show that TREM2 engagement by the mAb hT2AB as surrogate ligand activates microglia in 5XFAD transgenic mice that accumulate Aß and express either the common TREM2 variant (TREM2CV) or TREM2R47H scRNA-seq of microglia from TREM2CV-5XFAD mice treated once with control hIgG1 exposed four distinct trajectories of microglia activation leading to disease-associated (DAM), interferon-responsive (IFN-R), cycling (Cyc-M), and MHC-II expressing (MHC-II) microglia types. All of these were underrepresented in TREM2R47H-5XFAD mice, suggesting that TREM2 ligand engagement is required for microglia activation trajectories. Moreover, Cyc-M and IFN-R microglia were more abundant in female than male TREM2CV-5XFAD mice, likely due to greater Aß load in female 5XFAD mice. A single systemic injection of hT2AB replenished Cyc-M, IFN-R, and MHC-II pools in TREM2R47H-5XFAD mice. In TREM2CV-5XFAD mice, however, hT2AB brought the representation of male Cyc-M and IFN-R microglia closer to that of females, in which these trajectories had already reached maximum capacity. Moreover, hT2AB induced shifts in gene expression patterns in all microglial pools without affecting representation. Repeated treatment with a murinized hT2AB version over 10 d increased chemokines brain content in TREM2R47H-5XFAD mice, consistent with microglia expansion. Thus, the impact of hT2AB on microglia is shaped by the extent of TREM2 endogenous ligand engagement and basal microglia activation.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Membrane Glycoproteins/genetics , Microglia/metabolism , Receptors, Immunologic/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Brain/drug effects , Brain/pathology , Cell Proliferation , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , HEK293 Cells , Humans , Kinetics , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/classification , Microglia/drug effects , Microglia/pathology , Mutation , Protein Binding , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Sex Factors
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431694

ABSTRACT

Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.


Subject(s)
Dendritic Cells/immunology , Dermatitis, Contact/immunology , Interferon Type I/genetics , Lectins, C-Type/genetics , Receptors, Immunologic/genetics , Skin/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Diphtheria Toxin/genetics , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/immunology , Humans , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Th2 Cells/immunology , Transcription Factor 4/genetics , Transcription Factor 4/immunology
SELECTION OF CITATIONS
SEARCH DETAIL