Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 16(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39064687

ABSTRACT

Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.


Subject(s)
Aging , Brain , Gastrointestinal Microbiome , Neurodegenerative Diseases , Probiotics , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Neurodegenerative Diseases/prevention & control , Neurodegenerative Diseases/drug therapy , Brain/metabolism , Brain/drug effects , Probiotics/therapeutic use , Dysbiosis , Animals , Cellular Senescence/drug effects , Oxidative Stress/drug effects , Alzheimer Disease/prevention & control , Alzheimer Disease/drug therapy , Alzheimer Disease/microbiology
2.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792153

ABSTRACT

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Subject(s)
Apoptosis , Aziridines , Breast Neoplasms , Cell Proliferation , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Aziridines/pharmacology , Aziridines/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Probiotics/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects
3.
Molecules ; 28(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446908

ABSTRACT

Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.


Subject(s)
Catechin , Neoplasms , Humans , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Neoplasms/drug therapy , NF-kappa B/metabolism , Tea , Catechin/pharmacology , Catechin/therapeutic use , Apoptosis
4.
Cells ; 12(14)2023 07 21.
Article in English | MEDLINE | ID: mdl-37508570

ABSTRACT

Tumor therapy escape due to undesired side effects induced by treatment, such as prosurvival autophagy or cellular senescence, is one of the key mechanisms of resistance that eventually leads to tumor dormancy and recurrence. Glioblastoma is the most frequent and practically incurable neoplasm of the central nervous system; thus, new treatment modalities have been investigated to find a solution more effective than the currently applied standards based on temozolomide. The present study examined the newly synthesized compounds of aziridine-hydrazide hydrazone derivatives to determine their antineoplastic potential against glioblastoma cells in vitro. Although the output of our investigation clearly demonstrates their proapoptotic activity, the cytotoxic effect appeared to be blocked by treatment-induced autophagy, the phenomenon also detected in the case of temozolomide action. The addition of an autophagy inhibitor, chloroquine, resulted in a significant increase in apoptosis triggered by the tested compounds, as well as temozolomide. The new aziridine-hydrazide hydrazone derivatives, which present cytotoxic potential against glioblastoma cells comparable to or even higher than that of temozolomide, show promising results and, thus, should be further investigated as antineoplastic agents. Moreover, our findings suggest that the combination of an apoptosis inducer with an autophagy inhibitor could optimize chemotherapeutic efficiency, and the addition of an autophagy inhibitor should be considered as an optional adjunctive therapy minimizing the risk of tumor escape from treatment.


Subject(s)
Antineoplastic Agents , Aziridines , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Chloroquine/pharmacology , Hydrazones/pharmacology , Hydrazines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy , Aziridines/pharmacology , Aziridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL