Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949023

ABSTRACT

Cystic fibrosis is a debilitating disease characterized by a poor medical prognosis due to devastating lung injury. Recent medical advances targeting the major genetic mutation ΔF508 of the cystic fibrosis transmembrane conductance regulator (CFTR) protein have dramatically increased the lifespan of patients with this mutation. This development has led to major changes in the field and has pushed research beyond the ion transport nature of cystic fibrosis and toward multiorgan physiological reprogramming. In this issue of the JCI, Bae, Kim, and colleagues utilized a large animal pig model prior to the onset of disease. They revealed metabolic reprogramming and organ crosstalk that occurred prior to disease progression. These findings provide paradigm-shifting insight into this complex disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Animals , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Swine , Disease Models, Animal
2.
Am J Physiol Renal Physiol ; 327(1): F128-F136, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695076

ABSTRACT

Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , Protein Deglycase DJ-1 , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Protein Processing, Post-Translational , Mice, Inbred C57BL , Disease Models, Animal , Male , Sirtuins/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Mice , Oxidative Stress , Lysine/metabolism
3.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746370

ABSTRACT

The monomeric heme protein myoglobin (Mb), traditionally thought to be expressed exclusively in cardiac and skeletal muscle, is now known to be expressed in approximately 40% of breast tumors. While Mb expression is associated with better patient prognosis, the molecular mechanisms by which Mb limits cancer progression are unclear. In muscle, Mb's predominant function is oxygen storage and delivery, which is dependent on the protein's heme moiety. However, prior studies demonstrate that the low levels of Mb expressed in cancer cells preclude this function. Recent studies propose a novel fatty acid binding function for Mb via a lysine residue (K46) in the heme pocket. Given that cancer cells can upregulate fatty acid oxidation (FAO) to maintain energy production for cytoskeletal remodeling during cell migration, we tested whether Mb-mediated fatty acid binding modulates FAO to decrease breast cancer cell migration. We demonstrate that the stable expression of human Mb in MDA-MB-231 breast cancer cells decreases cell migration and FAO. Site-directed mutagenesis of Mb to disrupt Mb fatty acid binding did not reverse Mb-mediated attenuation of FAO or cell migration in these cells. In contrast, cells expressing Apo-Mb, in which heme incorporation was disrupted, showed a reversal of Mb-mediated attenuation of FAO and cell migration, suggesting that Mb attenuates FAO and migration via a heme-dependent mechanism rather than through fatty acid binding. To this end, we show that Mb's heme-dependent oxidant generation propagates dysregulated gene expression of migratory genes, and this is reversed by catalase treatment. Collectively, these data demonstrate that Mb decreases breast cancer cell migration, and this effect is due to heme-mediated oxidant production rather than fatty acid binding. The implication of these results will be discussed in the context of therapeutic strategies to modulate oxidant production and Mb in tumors. Highlights: Myoglobin (Mb) expression in MDA-MB-231 breast cancer cells slows migration.Mb expression decreases mitochondrial respiration and fatty acid oxidation.Mb-dependent fatty acid binding does not regulate cell migration or respiration.Mb-dependent oxidant generation decreases mitochondrial metabolism and migration.Mb-derived oxidants dysregulate migratory gene expression.

4.
J Clin Invest ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687608

ABSTRACT

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

6.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405696

ABSTRACT

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total body ionizing irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time- and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed significant reduction of mitochondrial function in the fetal brain after 3Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. Maternal administration JP4-039 one day after TBI (E14.5), which can pass through the placental barrier, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. This also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. As JP4-039 administration did not change litter sizes or fetus viability, together these findings indicate JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure. One Sentence Summary: Mitochondrial-targeted gramicidin S (GS)-nitroxide JP4-039 is safe and effective radiation mitigator for mid-gestational fetal irradiation injury.

7.
Proteomics ; 24(5): e2300162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775337

ABSTRACT

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Subject(s)
Acute Kidney Injury , Proteomics , Humans , Mice , Animals , Aged , Proteome , Down-Regulation , Kidney
8.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38044490

ABSTRACT

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Subject(s)
Acute Kidney Injury , Dicarboxylic Acids , Dietary Supplements , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Cisplatin , Dicarboxylic Acids/administration & dosage , Fatty Acids , Proteomics , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology
9.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961631

ABSTRACT

Objective: Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method: Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results: Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion: Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.

10.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628798

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths globally. Incidence rates are steadily increasing, creating an unmet need for new therapeutic options. Recently, the inhibition of sirtuin-2 (Sirt2) was proposed as a potential treatment for HCC, despite contradictory findings of its role as both a tumor promoter and suppressor in vitro. Sirt2 functions as a lysine deacetylase enzyme. However, little is known about its biological influence, despite its implication in several age-related diseases. This study evaluated Sirt2's role in HCC in vivo using an inducible c-MYC transgene in Sirt2+/+ and Sirt2-/- mice. Sirt2-/- HCC mice had smaller, less proliferative, and more differentiated liver tumors, suggesting that Sirt2 functions as a tumor promoter in this context. Furthermore, Sirt2-/- HCCs had significantly less c-MYC oncoprotein and reduction in c-MYC nuclear localization. The RNA-seq showed that only three genes were significantly dysregulated due to loss of Sirt2, suggesting the underlying mechanism is due to Sirt2-mediated changes in the acetylome, and that the therapeutic inhibition of Sirt2 would not perturb the oncogenic transcriptome. The findings of this study suggest that Sirt2 inhibition could be a promising molecular target for slowing HCC growth.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Mice, Transgenic , Carcinoma, Hepatocellular/genetics , Sirtuin 2/genetics , Liver Neoplasms/genetics , Carcinogens , Disease Models, Animal
11.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609254

ABSTRACT

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

12.
Article in English | MEDLINE | ID: mdl-37425219

ABSTRACT

Cardiac arrest (CA) causes high mortality due to multi-system organ damage attributable to ischemia-reperfusion injury. Recent work in our group found that among diabetic patients who experienced cardiac arrest, those taking metformin had less evidence of cardiac and renal damage after cardiac arrest when compared to those not taking metformin. Based on these observations, we hypothesized that metformin's protective effects in the heart were mediated by AMPK signaling, and that AMPK signaling could be targeted as a therapeutic strategy following resuscitation from CA. The current study investigates metformin interventions on cardiac and renal outcomes in a non-diabetic CA mouse model. We found that two weeks of metformin pretreatment protects against reduced ejection fraction and reduces kidney ischemia-reperfusion injury at 24 h post-arrest. This cardiac and renal protection depends on AMPK signaling, as demonstrated by outcomes in mice pretreated with the AMPK activator AICAR or metformin plus the AMPK inhibitor compound C. At this 24-h time point, heart gene expression analysis showed that metformin pretreatment caused changes supporting autophagy, antioxidant response, and protein translation. Further investigation found associated improvements in mitochondrial structure and markers of autophagy. Notably, Western analysis indicated that protein synthesis was preserved in arrest hearts of animals pretreated with metformin. The AMPK activation-mediated preservation of protein synthesis was also observed in a hypoxia/reoxygenation cell culture model. Despite the positive impacts of pretreatment in vivo and in vitro, metformin did not preserve ejection fraction when deployed at resuscitation. Taken together, we propose that metformin's in vivo cardiac preservation occurs through AMPK activation, requires adaptation before arrest, and is associated with preserved protein translation.

13.
Antioxidants (Basel) ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37508015

ABSTRACT

Aging is associated with a decline in mitochondrial function which may contribute to age-related diseases such as neurodegeneration, cancer, and cardiovascular diseases. Recently, mitochondrial Complex II has emerged as an important player in the aging process. Mitochondrial Complex II converts succinate to fumarate and plays an essential role in both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). The dysfunction of Complex II not only limits mitochondrial energy production; it may also promote oxidative stress, contributing, over time, to cellular damage, aging, and disease. Intriguingly, succinate, the substrate for Complex II which accumulates during mitochondrial dysfunction, has been shown to have widespread effects as a signaling molecule. Here, we review recent advances related to understanding the function of Complex II, succinate signaling, and their combined roles in aging and aging-related diseases.

14.
Article in English | MEDLINE | ID: mdl-37382868

ABSTRACT

PURPOSE: Diastolic dysfunction is an increasingly common cardiac pathology linked to heart failure with preserved ejection fraction. Previous studies have implicated glucagon-like peptide 1 (GLP-1) receptor agonists as potential therapies for improving diastolic dysfunction. In this study, we investigate the physiologic and metabolic changes in a mouse model of angiotensin II (AngII)-mediated diastolic dysfunction with and without the GLP-1 receptor agonist liraglutide (Lira). METHODS: Mice were divided into sham, AngII, or AngII+Lira therapy for 4 weeks. Mice were monitored for cardiac function, weight change, and blood pressure at baseline and after 4 weeks of treatment. After 4 weeks of treatment, tissue was collected for histology, protein analysis, targeted metabolomics, and protein synthesis assays. RESULTS: AngII treatment causes diastolic dysfunction when compared to sham mice. Lira partially prevents this dysfunction. The improvement in function in Lira mice is associated with dramatic changes in amino acid accumulation in the heart. Lira mice also have improved markers of protein translation by Western blot and increased protein synthesis by puromycin assay, suggesting that increased protein turnover protects against fibrotic remodeling and diastolic dysfunction seen in the AngII cohort. Lira mice also lost lean muscle mass compared to the AngII cohort, raising concerns about peripheral muscle scavenging as a source of the increased amino acids in the heart. CONCLUSIONS: Lira therapy protects against AngII-mediated diastolic dysfunction, at least in part by promoting amino acid uptake and protein turnover in the heart. Liraglutide therapy is associated with loss of mean muscle mass, and long-term studies are warranted to investigate sarcopenia and frailty with liraglutide therapy in the setting of diastolic disease.

15.
Antioxidants (Basel) ; 12(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107275

ABSTRACT

Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified. Here we show, using FAN1-deficient human renal tubular epithelial cells (hRTECs) and FAN1-null mice as a model of KIN, that FAN1 kidney pathophysiology is triggered by hypersensitivity to endogenous reactive oxygen species (ROS), which cause chronic oxidative and double-strand DNA damage in the kidney tubular epithelial cells, accompanied by an intrinsic failure to repair DNA damage. Furthermore, persistent oxidative stress in FAN1-deficient RTECs and FAN1 kidneys caused mitochondrial deficiencies in oxidative phosphorylation and fatty acid oxidation. The administration of subclinical, low-dose cisplatin increased oxidative stress and aggravated mitochondrial dysfunction in FAN1-deficient kidneys, thereby exacerbating KIN pathophysiology. In contrast, treatment of FAN1 mice with a mitochondria-targeted ROS scavenger, JP4-039, attenuated oxidative stress and accumulation of DNA damage, mitigated tubular injury, and preserved kidney function in cisplatin-treated FAN1-null mice, demonstrating that endogenous oxygen stress is an important source of DNA damage in FAN1-deficient kidneys and a driver of KIN pathogenesis. Our findings indicate that therapeutic modulation of kidney oxidative stress may be a promising avenue to mitigate FAN1/KIN kidney pathophysiology and disease progression in patients.

16.
bioRxiv ; 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36865241

ABSTRACT

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A fast-acquisition rate ZenoTOF 7600 mass spectrometer was introduced for data-independent acquisition (DIA) for comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3,945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured mice exhibited severely declined health. The comprehensive and sensitive kidney-specific DIA assays highlighted here feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome and will serve as useful tools for developing novel therapeutics to remediate kidney function.

17.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36335793

ABSTRACT

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Subject(s)
Glucose , Sialyltransferases , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , G(M3) Ganglioside/metabolism , Glucose/metabolism , Mice, Knockout , Pyruvic Acid , Seizures/genetics , Sialyltransferases/genetics , Sialyltransferases/metabolism
18.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743153

ABSTRACT

Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Coronary Artery Disease/complications , Female , Ischemia/complications , Metabolomics , Myocardial Ischemia/complications , Myocardial Reperfusion Injury/metabolism , Reperfusion/adverse effects , Swine , Swine, Miniature
19.
Sci Transl Med ; 14(646): eabq4863, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35613282

ABSTRACT

Posttranslational modifications contribute to the pathology of methylmalonic acidemia and may be targetable via an acylation-resistant sirtuin (Head et al., this issue).


Subject(s)
Amino Acid Metabolism, Inborn Errors , Lysine , Acylation , Humans , Lysine/metabolism , Protein Processing, Post-Translational
20.
Mol Genet Metab ; 136(1): 38-45, 2022 05.
Article in English | MEDLINE | ID: mdl-35367142

ABSTRACT

Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). Phe over-representation is systemic; however, tissue response to hyperphenylalaninemia is not consistent. To characterize hyperphenylalaninemia tissue response, metabolomics was applied to Pahenu2 classical PKU mouse blood, liver, and brain. In blood and liver over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (Phe-conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of Pahenu2 brain tissue evidenced oxidative stress responses and energy dysregulation. Glutathione and homocarnosine anti-oxidative responses are apparent Pahenu2 brain. Oxidative stress in Pahenu2 brain was further evidenced by increased reactive oxygen species. Pahenu2 brain presents an increased NADH/NAD ratio suggesting respiratory chain complex 1 dysfunction. Respirometry in Pahenu2 brain mitochondria functionally confirmed reduced respiratory chain activity with an attenuated response to pyruvate substrate. Glycolysis pathway analytes are over-represented in Pahenu2 brain tissue. PKU pathologies owe to liver metabolic deficiency; yet, Pahenu2 liver tissue shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Animals , Disease Models, Animal , Humans , Metabolomics , Mice , Oxidative Stress , Phenylalanine , Phenylketonurias/genetics , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...