Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Immunol ; 210(7): 972-980, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36779805

ABSTRACT

The anemia of critical illness (ACI) is a nearly universal pathophysiological consequence of burn injury and a primary reason burn patients require massive quantities of transfused blood. Inflammatory processes are expected to drive postburn ACI and prevent meaningful erythropoietic stimulation through iron or erythropoietin supplementation, but to this day no specific inflammatory pathways have been identified as a critical mechanism. In this study, we examined whether secretion of G-CSF and IL-6 mediates distinct features of postburn ACI and interrogated inflammatory mechanisms that could be responsible for their secretion. Our analysis of mouse and human skin samples identified the burn wound as a primary source of G-CSF and IL-6 secretion. We show that G-CSF and IL-6 are secreted independently through an IL-1/MyD88-dependent mechanism, and we ruled out TLR2 and TLR4 as critical receptors. Our results indicate that IL-1/MyD88-dependent G-CSF secretion plays a key role in impairing medullary erythropoiesis and IL-6 secretion plays a key role in limiting the access of erythroid cells to iron. Importantly, we found that IL-1α/ß neutralizing Abs broadly attenuated features of postburn ACI that could be attributed to G-CSF or IL-6 secretion and rescued deficits of circulating RBC counts, hemoglobin, and hematocrit caused by burn injury. We conclude that wound-based IL-1/MyD88 signaling mediates postburn ACI through induction of G-CSF and IL-6 secretion.


Subject(s)
Anemia , Burns , Humans , Granulocyte Colony-Stimulating Factor/metabolism , Interleukin-6/metabolism , Myeloid Differentiation Factor 88/metabolism , Anemia/etiology , Burns/complications , Iron/metabolism , Interleukin-1/metabolism
2.
Burns ; 49(4): 877-888, 2023 06.
Article in English | MEDLINE | ID: mdl-35850881

ABSTRACT

Probiotics have become of interest as therapeutics in trauma or sepsis-induced inflammation due to their ability to affects the immune response. However, their use is still under debate due to the potential risk of septicemia. Therefore, heat-killed probiotics offer a potential alternative, with recent research suggesting a comparable immunomodulating potential and increased safety. In a previous study, we demonstrated decreased mortality by administration of live Lactobacillus plantarum in a mouse burn-sepsis model. Neutrophils are an essential innate defense against pathogens. Therefore, our present study aims to understand the impact of heat-killed probiotic L. plantarum (HKLP) on neutrophil function. Utilizing an in vitro stimulation with HKLP and a burn-infection in vivo model, we determined that administration of HKLP induced significant release of granulocyte-colony stimulating factor (G-CSF) and stimulated the release of pro-and anti-inflammatory cytokines. HKLP had no impact on neutrophil function, such as phagocytosis, oxidative burst, and NETosis, but increased apoptosis and activated neutrophils. HKLP did not improve survival. Together, contrary to our hypothesis, heat-killed probiotics did not improve neutrophil function and survival outcome in a murine severe burn injury model.


Subject(s)
Burns , Lactobacillus plantarum , Probiotics , Sepsis , Mice , Animals , Neutrophils , Hot Temperature , Sepsis/therapy
3.
Proc Natl Acad Sci U S A ; 119(13): e2120691119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35312372

ABSTRACT

Fatty acid composition in the Western diet has shifted from saturated to polyunsaturated fatty acids (PUFAs), and specifically to linoleic acid (LA, 18:2), which has gradually increased in the diet over the past 50 y to become the most abundant dietary fatty acid in human adipose tissue. PUFA-derived oxylipins regulate a variety of biological functions. The cytochrome P450 (CYP450)­formed epoxy fatty acid metabolites of LA (EpOMEs) are hydrolyzed by the soluble epoxide hydrolase enzyme (sEH) to dihydroxyoctadecenoic acids (DiHOMEs). DiHOMEs are considered cardioprotective at low concentrations but at higher levels have been implicated as vascular permeability and cytotoxic agents and are associated with acute respiratory distress syndrome in severe COVID-19 patients. High EpOME levels have also correlated with sepsis-related fatalities; however, those studies failed to monitor DiHOME levels. Considering the overlap of burn pathophysiology with these pathologies, the role of DiHOMEs in the immune response to burn injury was investigated. 12,13-DiHOME was found to facilitate the maturation and activation of stimulated neutrophils, while impeding monocyte and macrophage functionality and cytokine generation. In addition, DiHOME serum concentrations were significantly elevated in burn-injured mice and these increases were ablated by administration of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a sEH inhibitor. TPPU also reduced necrosis of innate and adaptive immune cells in burned mice, in a dose-dependent manner. The findings suggest DiHOMEs are a key driver of immune cell dysfunction in severe burn injury through hyperinflammatory neutrophilic and impaired monocytic actions, and inhibition of sEH might be a promising therapeutic strategy to mitigate deleterious outcomes in burn patients.


Subject(s)
Burns , Sepsis , Animals , Epoxide Hydrolases/metabolism , Humans , Immunity, Innate , Inflammation/drug therapy , Linoleic Acid/metabolism , Mice , Mice, Inbred C57BL , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Sepsis/drug therapy
4.
Sci Rep ; 11(1): 16555, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400718

ABSTRACT

Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Anti-Inflammatory Agents/therapeutic use , Burns/drug therapy , Neutrophils/immunology , Phenylurea Compounds/therapeutic use , Piperidines/therapeutic use , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Burns/immunology , Burns/metabolism , Burns/pathology , Cytokines/blood , Epoxide Hydrolases/antagonists & inhibitors , Female , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Neutrophils/classification , Neutrophils/metabolism , Phagocytosis/drug effects , Phenylurea Compounds/pharmacology , Phosphatidylinositol 3-Kinases/biosynthesis , Phosphatidylinositol 3-Kinases/genetics , Piperidines/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Chemokine/physiology , Respiratory Burst/drug effects , Transcription, Genetic/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/biosynthesis , p38 Mitogen-Activated Protein Kinases/genetics
5.
Thromb Res ; 193: 211-217, 2020 09.
Article in English | MEDLINE | ID: mdl-32798961

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) induces acute hypocoagulability, subacute hypercoagulability, and persistently elevated risk for thromboembolic events. Splenectomy is associated with increased mortality in patients with moderate or severe TBI. We hypothesized that the adverse effects of splenectomy in TBI patients may be secondary to the exacerbation of pathologic coagulation and platelet activation changes. METHODS: An established murine weight-drop TBI model was utilized and a splenectomy was performed immediately following TBI. Sham as well as TBI and splenectomy alone mice were used as injury controls. Mice were sacrificed for blood draws at 1, 6, and 24 h, as well as 7 days post-TBI. Viscoelastic coagulation parameters were assessed by rotational thromboelastometry (ROTEM) and platelet activation was measured by expression of P-selectin via flow cytometry analysis of platelet rich plasma samples. RESULTS: At 6 h following injury, TBI/splenectomy demonstrated hypocoagulability with prolonged clot formation time (CFT) compared to TBI alone. By 24 h following injury, TBI/splenectomy and splenectomy mice were hypercoagulable with a shorter CFT, a higher alpha angle, and increased MCF, despite a lower percentage of platelet contribution to clot compared to TBI alone. However, only the TBI/splenectomy continued to display this hypercoagulable state at 7 days. While TBI/splenectomy had greater P-selectin expression at 1-h post-injury, TBI alone had significantly greater P-selectin expression at 24 h post-injury compared to TBI/splenectomy. Interestingly, P-selectin expression remained elevated only in TBI/splenectomy at 7 days post-injury. CONCLUSION: Splenectomy following TBI exacerbates changes in the post-injury coagulation state. The combination of TBI and splenectomy induces an acute hypocoagulable state that could contribute to an increase in intracranial bleeding. Subacutely, the addition of splenectomy to TBI exacerbates post-injury hypercoagulability and induces persistent platelet activation. These polytrauma effects on coagulation may contribute to the increased mortality observed in patients with combined brain and splenic injuries.


Subject(s)
Blood Coagulation Disorders , Splenectomy , Animals , Disease Models, Animal , Humans , Mice , Platelet Activation , Splenectomy/adverse effects , Thrombelastography
6.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G390-G400, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31961717

ABSTRACT

Hepatic ischemia-reperfusion (I/R) is a major complication of liver resection, trauma, and liver transplantation; however, liver repair after I/R in diseased liver has not been studied. The present study sought to determine the manner in which the fibrotic liver repairs itself after I/R. Liver fibrosis was established in mice by CCl4 administration for 6 wk, and then liver I/R was performed to investigate liver injury and subsequent liver repair in fibrotic and control livers. After I/R, fibrotic liver had more injury compared with nonfibrotic, control liver; however, fibrotic liver showed rapid resolution of liver necrosis and reconstruction of liver parenchyma. Marked accumulation of hepatic stellate cells and macrophages were observed specifically in the fibrotic septa in early reparative phase. Fibrotic liver had higher numbers of hepatic stellate cells, macrophages, and hepatic progenitor cells during liver recovery after I/R than did control liver, but hepatocyte proliferation was unchanged. Fibrotic liver also had significantly greater number of phagocytic macrophages than control liver. Clodronate liposome injection into fibrotic mice after I/R caused decreased macrophage accumulation and delay of liver recovery. Conversely, CSF1-Fc injection into normal mice after I/R resulted in increased macrophage accumulation and concomitant decrease in necrotic tissue during liver recovery. In conclusion, fibrotic liver clears necrotic areas and restores normal parenchyma faster than normal liver after I/R. This beneficial response appears to be directly related to the increased numbers of nonparenchymal cells, particularly phagocytic macrophages, in the fibrotic liver.NEW & NOTEWORTHY This study is the first to reveal how diseased liver recovers after ischemia-reperfusion (I/R) injury. Although it was not completely unexpected that fibrotic liver had increased hepatic injury after I/R, a novel finding was that fibrotic liver had accelerated recovery and repair compared with normal liver. Enhanced repair after I/R in fibrotic liver was associated with increased expansion of phagocytic macrophages, hepatic stellate cells, and progenitor cells.


Subject(s)
Chemical and Drug Induced Liver Injury/physiopathology , Liver Cirrhosis, Experimental/physiopathology , Liver Regeneration , Liver/physiopathology , Reperfusion Injury/physiopathology , Animals , Cell Proliferation , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Necrosis , Phagocytosis , Recovery of Function , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Stem Cells/metabolism , Stem Cells/pathology , Time Factors
7.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G773-G783, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31604030

ABSTRACT

The CXC chemokine receptor 2 (CXCR2) is critical for neutrophil recruitment and hepatocellular viability but has not been studied in the context of cholestatic liver injury following bile duct ligation (BDL). The present study sought to elucidate the cell-specific roles of CXCR2 on acute liver injury after BDL. Wild-type and CXCR2-/- mice were subjected BDL. CXCR2 chimeric mice were created to assess the cell-specific role of CXCR2 on liver injury after BDL. SB225002, a selective CXCR2 antagonist, was administrated intraperitoneally after BDL to investigate the potential of pharmacological inhibition. CXCR2-/- mice had significantly less liver injury than wild-type mice at 3 and 14 days after BDL. There was no difference in biliary fibrosis among groups. The chemokines CXCL1 and CXCL2 were induced around areas of necrosis and biliary structures, respectively, both areas where neutrophils accumulated after BDL. CXCR2-/- mice showed significantly less neutrophil accumulation in those injured areas. CXCR2Liver+/Myeloid+ and CXCR2Liver-/Myeloid- mice recapitulated the wild-type and CXCR2-knockout phenotypes, respectively. CXCR2Liver+/Myeloid+ mice suffered higher liver injury than CXCR2Liver+/Myeloid- and CXCR2Liver-/Myeloid+; however, only those chimeras with knockout of myeloid CXCR2 (CXCR2Liver+/Myeloid- and CXCR2Liver-/Myeloid-) showed reduction of neutrophil accumulation around areas of necrosis. Daily administration of SB225002 starting after 3 days of BDL reduced established liver injury at 6 days. In conclusion, neutrophil CXCR2 guides the cell to the site of injury, while CXCR2 on liver cells affects liver damage independent of neutrophil accumulation. CXCR2 appears to be a viable therapeutic target for cholestatic liver injury.NEW & NOTEWORTHY This study is the first to reveal cell-specific roles of the chemokine receptor CXCR2 in cholestatic liver injury caused by bile duct ligation. CXCR2 on neutrophils facilitates neutrophil recruitment to the liver, while CXCR2 on liver cells contributes to liver damage independent of neutrophils. CXCR2 may represent a viable therapeutic target for cholestatic liver injury.


Subject(s)
Cell Movement/drug effects , Liver , Neutrophils/physiology , Phenylurea Compounds/pharmacology , Receptors, Interleukin-8B , Animals , Cell Migration Inhibition , Chemokine CXCL1/metabolism , Chemokine CXCL2/metabolism , Cholestasis/complications , Disease Models, Animal , Hepatic Infarction/drug therapy , Hepatic Infarction/etiology , Hepatic Infarction/metabolism , Liver/metabolism , Liver/pathology , Mice , Necrosis , Protective Agents/pharmacology , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism
8.
Shock ; 51(3): 356-363, 2019 03.
Article in English | MEDLINE | ID: mdl-29608550

ABSTRACT

During sepsis, the early innate response and inflammatory cytokine cascade are associated with activation of the coagulation cascade. Acute hypercoagulability can contribute to lethal sequela of vascular thrombosis, tissue ischemia, and organ failure. We investigated if amitriptyline (AMIT), an antidepressant drug with a number of anti-inflammatory effects, could ameliorate sepsis in a murine model of sepsis-cecal ligation and puncture (CLP). We hypothesized that AMIT treatment would reduce inflammation and mitigate sepsis-induced coagulopathy. Coagulation was measured using thromboelastometry and ferric chloride-induced carotid artery thrombosis. Our findings demonstrate a dynamic early hypercoagulability, followed by delayed hypocoagulability in septic mice. However, septic mice treated with AMIT were unaffected by these coagulation changes and exhibited a coagulation profile similar to sham mice. TNFα was markedly elevated in septic mice, but decreased in AMIT-treated mice. Exogenous administration of recombinant TNFα in naive mice recapitulated the acute sepsis-induced hypercoagulability profile. After sepsis and endotoxemia, peritoneal macrophages were the predominant source of TNFα expression. AMIT treatment significantly decreased macrophage TNFα expression and blunted M1 polarization. Altogether, during polymicrobial sepsis, AMIT treatment suppressed macrophage TNFα expression and the M1 phenotype, mitigating an initial hypercoagulable state, and protecting septic mice from delayed hypocoagulability. We propose that AMIT treatment is a promising therapeutic approach in the treatment of sepsis-associated coagulopathy and prevention of acute thromboembolic events or delayed bleeding complications.


Subject(s)
Amitriptyline/pharmacology , Blood Coagulation Disorders , Gene Expression Regulation/drug effects , Sepsis , Tumor Necrosis Factor-alpha/blood , Animals , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/pathology , Blood Coagulation Disorders/prevention & control , Disease Models, Animal , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Mice , Sepsis/blood , Sepsis/drug therapy , Sepsis/pathology
9.
Int J Mol Sci ; 18(8)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28796194

ABSTRACT

Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS), which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP) method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.


Subject(s)
Immune Tolerance , Inflammation/etiology , Sepsis/complications , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Critical Illness , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Pseudomonas Infections/complications , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/physiology , Sepsis/immunology , Sepsis/metabolism , Sepsis/pathology
10.
J Surg Res ; 215: 47-54, 2017 07.
Article in English | MEDLINE | ID: mdl-28688660

ABSTRACT

BACKGROUND: Posttraumatic coagulopathy and inflammation can exacerbate secondary cerebral damage after traumatic brain injury (TBI). Tranexamic acid (TXA) has been shown clinically to reduce mortality in hemorrhaging and head-injured trauma patients and has the potential to mitigate secondary brain injury with its reported antifibrinolytic and antiinflammatory properties. We hypothesized that TXA would improve posttraumatic coagulation and inflammation in a murine model of TBI alone and in a combined injury model of TBI and hemorrhage (TBI/H). METHODS: An established murine weight drop model was used to induce a moderate TBI. Mice were administered intraperitoneal injections of 10 mg/kg TXA or equivalent volume of saline 10 min after injury. An additional group of mice was subjected to TBI followed by hemorrhagic shock using a pressure-controlled model. TBI/H mice were given intraperitoneal injections of TXA or saline during resuscitation. Blood was collected at intervals after injury to assess coagulation by rotational thromboelastometry (ROTEM) and inflammation by Multiplex cytokine analysis. Soluble P-selectin, a biomarker of platelet activation, and serum neuron-specific enolase, a biomarker of cerebral injury, were measured at intervals. Brain homogenates were analyzed for inflammatory changes by Multiplex enzyme-linked immunosorbent assay, and splenic tissue was collected for splenic cell population assessment by flow cytometry. RESULTS: There were no coagulation, serum or cerebral cytokine, P-selectin, or neuron-specific enolase differences between mice treated with TXA or saline after TBI. After the addition of hemorrhagic shock and resuscitation to TBI, TXA administration still did not affect coagulation parameters, systemic or cerebral inflammation, or platelet activation, as compared with saline alone. At 24 hours after TBI, mice given TXA demonstrated lower splenic total cell counts central memory CD8, effector CD8, B cell, and increased naive CD4 cell populations. By contrast, TXA did not affect splenic leukocyte populations after combined TBI/H. CONCLUSIONS: Despite clinical data suggesting a mortality benefit, TXA did not modulate coagulation, inflammation, or biomarker generation in either the TBI or TBI/H murine models. Administration of TXA after TBI altered splenic leukocyte populations, which may contribute to a change in posttraumatic immune status. Future studies should be done to investigate the role of TXA in the development of posttraumatic immunosuppression and risk of nosocomial infections.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antifibrinolytic Agents/therapeutic use , Blood Coagulation Disorders/drug therapy , Brain Injuries, Traumatic/complications , Inflammation/drug therapy , Shock, Hemorrhagic/drug therapy , Tranexamic Acid/therapeutic use , Animals , Biomarkers/metabolism , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , Brain Injuries, Traumatic/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Inflammation/etiology , Inflammation/metabolism , Injections, Intraperitoneal , Male , Mice , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/metabolism , Treatment Outcome
11.
Biochem Biophys Res Commun ; 437(4): 591-6, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23850678

ABSTRACT

Despite advances in understanding and treatment of sepsis, it remains a disease with high mortality. Neutrophil Derived Microparticles (NDMPs) are present during sepsis and can modulate the immune system. As TNF-α is a cytokine that predominates in the initial stages of sepsis, we evaluated whether and how TNF-α can induce NDMPs in mice. We observed that TNF-α treatment results in increased NDMP numbers. We also determined that the activation of either TNF receptor 1 (TNFr1) or TNF receptor 2 (TNFr2) resulted in increased NDMP numbers and that activation of both resulted in an additive increase. Inhibition of Caspase 8 diminishes NDMPs generated through TNFr1 activation and inhibition of NF-κB abrogates NDMPs generated through activation of both TNFr1 and TNFr2. We conclude that the early production of TNF-α during sepsis can increase NDMP numbers through activation of the Caspase 8 pathway or NF-κB.


Subject(s)
Caspase 8/metabolism , NF-kappa B/metabolism , Neutrophils/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis , Enzyme Activation , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Sepsis/metabolism , Signal Transduction
12.
Hepatology ; 57(1): 331-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22961770

ABSTRACT

UNLABELLED: Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. CONCLUSION: The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation.


Subject(s)
Hepatocytes/metabolism , Liver Regeneration , Myeloid Cells/metabolism , Receptors, Interleukin-8B/metabolism , Reperfusion Injury , Animals , Bone Marrow Transplantation , Cell Proliferation , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Neutrophils/metabolism
13.
Infect Immun ; 78(11): 4714-22, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20823197

ABSTRACT

The sepsis syndrome represents an improper immune response to infection and is associated with unacceptably high rates of mortality and morbidity. The interactions between T cells and the innate immune system while combating sepsis are poorly understood. In this report, we observed that treatment with the potent, antiapoptotic cytokine interleukin-7 (IL-7) accelerated neutrophil recruitment and improved bacterial clearance. We first determined that T cells were necessary for the previously observed IL-7-mediated enhanced survival. Next, IL-7 increased Bcl-2 expression in T cells isolated from septic mice as early as 3 h following treatment. This treatment resulted in increased gamma interferon (IFN-γ) and IP-10 production within the septic peritoneum together with local and systemic increases of IL-17 in IL-7-treated mice. We further demonstrate that the increase in IL-17 was largely due to increased recruitment and production by γδ T cells, which express CXCR3. Consistent with increased IL-17 production, IL-7 treatment increased CXCL1/KC production, neutrophil recruitment, and bacterial clearance. Significantly, end-organ tissue injury was not significantly different between vehicle- and IL-7-treated mice. Collectively, these data illustrate that IL-7 can mediate the cross talk between Th1 and Th17 lymphocytes during sepsis such that neutrophil recruitment and bacterial clearance is improved while early tissue injury is not increased. All together, these observations may underlay novel potential therapeutic targets to improve the host immune response to sepsis.


Subject(s)
Interleukin-17/biosynthesis , Interleukin-7/therapeutic use , Neutrophil Infiltration/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sepsis/immunology , Sepsis/therapy , T-Lymphocytes/immunology , Animals , Cytokines/immunology , Disease Models, Animal , Interleukin-7/administration & dosage , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/genetics , Sepsis/microbiology , Sepsis/mortality , T-Lymphocytes/metabolism , Treatment Outcome
14.
Am J Physiol Regul Integr Comp Physiol ; 299(3): R918-25, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592179

ABSTRACT

Following burn injury, the host is susceptible to bacterial infections normally cleared by healthy patients. We hypothesized that during the systemic immune response that follows scald injury, the host's altered immune status increases infection susceptibility. Using a murine model of scald injury under inhaled anesthesia followed by intraperitoneal infection, we observed increased neutrophil numbers and function at postburn day (PBD) 1 compared with sham-burned and PBD4 mice. Further, increased mortality, bacteremia, and serum IL-6 were observed in PBD1 mice after Pseudomonas aeruginosa (PA) infection compared with sham-burned and PBD4 mice infected with PA. To examine these disparate responses, we investigated neutrophils isolated at 5 and 24 h following PA infection from PBD1 and sham-burned mice. Five hours after infection, there was no significant difference in number of recruited neutrophils; however, neutrophils from injured mice had decreased activation, active-p38, and oxidative burst compared with sham-burned mice. In direct contrast, 24 h after infection, we observed increased numbers, active-p38, and oxidative burst of neutrophils from PBD1 mice. Finally, we demonstrated that in neutrophils isolated from PBD1 mice, the observed increase in oxidative burst was p38 dependent. Altogether, neutrophil activation and function from thermally injured mice are initially delayed and later exacerbated by a p38-dependent mechanism. This mechanism is likely key to the observed increase in bacterial load and mortality of PBD1 mice infected with PA.


Subject(s)
Burns/metabolism , Inflammation/complications , Neutrophils/enzymology , Neutrophils/physiology , Pseudomonas Infections/complications , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Male , Mice , Pseudomonas Infections/immunology , Pseudomonas Infections/mortality , Pseudomonas aeruginosa , Respiratory Burst , Time Factors
15.
Shock ; 34(4): 377-83, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20610943

ABSTRACT

Survival during sepsis requires both swift control of infectious organisms and tight regulation of the associated inflammatory response. As the role of T cells in sepsis is somewhat controversial, we examined the impact of increasing antigen-dependent activation of CD4 T cells in a murine model of cecal ligation and puncture using T-cell receptor transgenic II (OT-II) mice that are specific for chicken ovalbumin (OVA) in the context of major histocompatibility complex II. Here, we injected OT-II mice with 0, 1, or 100 µg of OVA and demonstrate that increased antigen treatment resulted in increased numbers of activated splenic CD4 T cells. Vehicle-treated, septic OT-II mice had decreased survival, increased bacterial load, and increased levels of IL-6. Interestingly, this decrease in survival was abrogated when OT-II mice were injected with 1 µg OVA, which was correlated with normalized bacterial load and levels of IL-6. However, when OT-II mice were injected with 100 µg OVA, decreased survival was restored but, in contrast to vehicle-treated OT-II mice, had decreased bacterial load and enhanced IL-6 levels. We also observed that neutrophil oxidative burst and phagocytosis were dependent on CD4 T-cell activation. Further, at extreme levels of T-cell activation, intestinal permeability was significantly increased. Altogether, we conclude that too little CD4 T-cell activation produces dysfunctional neutrophils leading to decreased bacteria clearance and survival, whereas too much CD4 T-cell activation produces a neutrophil phenotype that leads to efficient bacterial clearance but with increased tissue damage and mortality.


Subject(s)
Lymphocyte Activation/immunology , Lymphocyte Activation/physiology , Sepsis/immunology , Animals , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , In Vitro Techniques , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Respiratory Burst/physiology
16.
BMC Immunol ; 11: 4, 2010 Jan 25.
Article in English | MEDLINE | ID: mdl-20100328

ABSTRACT

BACKGROUND: The immune response to trauma has traditionally been modeled to consist of the systemic inflammatory response syndrome (SIRS) followed by the compensatory anti-inflammatory response syndrome (CARS). We investigated these responses in a homogenous cohort of male, severe blunt trauma patients admitted to a University Hospital surgical intensive care unit (SICU). After obtaining consent, peripheral blood was drawn up to 96 hours following injury. The enumeration and functionality of both myeloid and lymphocyte cell populations were determined. RESULTS: Neutrophil numbers were observed to be elevated in trauma patients as compared to healthy controls. Further, neutrophils isolated from trauma patients had increased raft formation and phospho-Akt. Consistent with this, the neutrophils had increased oxidative burst compared to healthy controls. In direct contrast, blood from trauma patients contained decreased naïve T cell numbers. Upon activation with a T cell specific mitogen, trauma patient T cells produced less IFN-gamma as compared to those from healthy controls. Consistent with these results, upon activation, trauma patient T cells were observed to have decreased T cell receptor mediated signaling. CONCLUSIONS: These results suggest that following trauma, there are concurrent and divergent immunological responses. These consist of a hyper-inflammatory response by the innate arm of the immune system concurrent with a hypo-inflammatory response by the adaptive arm.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interferon-gamma/biosynthesis , Neutrophils/metabolism , T-Lymphocytes/metabolism , Adult , Humans , Interferon-gamma/genetics , Lymphopenia , Male , Membrane Microdomains/metabolism , Neutrophils/immunology , Neutrophils/pathology , Oncogene Protein v-akt/immunology , Oncogene Protein v-akt/metabolism , Oxidative Phosphorylation , Respiratory Burst , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Wounds and Injuries/blood
17.
J Immunol ; 183(1): 499-505, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19525393

ABSTRACT

Leukocyte function can be modulated through the cannabinoid receptor 2 (CB2R). Using a cecal ligation and puncture (CLP) model of sepsis, we examined the role of the CB2R during the immune response to an overwhelming infection. CB2R-knock out (KO) mice showed decreased survival as compared with wild-type mice. CB2R-KO mice also had increased serum IL-6 and bacteremia. Twenty-four hours after CLP, the CB2R-deficient mice had increased lung injury. Additionally, CB2R-deficiency led to increased neutrophil recruitment, decreased neutrophil activation, and decreased p38 activity at the site of infection. Consistent with a novel role for CB2R in sepsis, CB2R-agonist treatment in wild-type mice increased the mean survival time in response to CLP. Treatment with CB2R-agonist also decreased serum IL-6 levels, bacteremia, and damage to the lungs compared with vehicle-treated mice. Finally, the CB2R agonist decreased neutrophil recruitment, while increasing neutrophil activation and p38 activity at the site of infection compared with vehicle-treated mice. These data suggest that CB2R is a critical regulator of the immune response to sepsis and may be a novel therapeutic target.


Subject(s)
Receptor, Cannabinoid, CB2/physiology , Shock, Septic/immunology , Shock, Septic/microbiology , Animals , Bacteremia/immunology , Bacteremia/microbiology , Bacteremia/mortality , Bacteremia/pathology , Cecum , Disease Models, Animal , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Integrin alpha2/administration & dosage , Integrin alpha2/therapeutic use , Ligation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Punctures , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/deficiency , Receptor, Cannabinoid, CB2/genetics , Shock, Septic/mortality , Shock, Septic/pathology , Signal Transduction/genetics , Signal Transduction/immunology
18.
J Leukoc Biol ; 83(3): 581-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18063696

ABSTRACT

Sepsis is a difficult condition to treat and is associated with a high mortality rate. Sepsis is known to cause a marked depletion of lymphocytes, although the function of different lymphocyte subsets in the response to sepsis is unclear. gammadelta T cells are found largely in epithelial-rich tissues, and previous studies of gammadelta T cells in models of sepsis have yielded divergent results. In the present study, we examined the function of gammadelta T cells during sepsis in mice using cecal ligation and puncture (CLP). Mice deficient in gammadelta T cells had decreased survival times and increased tissue damage after CLP compared with wild-type mice. Furthermore, bacterial load was increased in gammadelta T cell-deficient mice, yet antibiotic treatment did not change mortality. Additionally, we found that recruitment of neutrophils and myeloid suppressor cells to the site of infection was diminished in gammadelta T cell-deficient mice. Finally, we found that circulating levels of IFN-gamma were increased, and systemic levels of IL-10 were decreased in gammadelta T cell-deficient mice after CLP compared with wild-type mice. gammadelta T cell-deficient mice also had increased intestinal permeability after CLP compared with wild-type mice. Neutralization of IFN-gamma abrogated the increase in intestinal permeability in gammadelta T cell-deficient mice. The intestines taken from gammadelta T cell-deficient mice had decreased myeloperoxidase yet had increased tissue damage as compared with wild-type mice. Collectively, our data suggest that gammadelta T cells modulate the response to sepsis and may be a potential therapeutic target.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/immunology , Sepsis/immunology , T-Lymphocytes/immunology , Wounds, Nonpenetrating/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Humans , Intestines/immunology , Intestines/pathology , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/deficiency , Receptors, Antigen, T-Cell, gamma-delta/genetics , Reference Values , Sepsis/mortality , Sepsis/prevention & control , Survival Analysis , Wounds, Nonpenetrating/mortality , Wounds, Nonpenetrating/prevention & control
19.
Shock ; 29(5): 591-7, 2008 May.
Article in English | MEDLINE | ID: mdl-17885647

ABSTRACT

It is well established that the immune response to sepsis is mediated by leukocytes associated with the innate immune system. However, there is an emerging view that T lymphocytes can also mediate this response. Here, we observed a significant depletion of both CD4 and CD8 T cells in human patients after blunt trauma. To determine what effect the loss of these cells may have during a subsequent infection, we obtained CD4- and CD8-deficient mice and subjected them to cecal ligation and puncture (CLP). We observed that CD4 knockout (KO) mice showed increased CLP-induced mortality compared with CD8-deficient and wild-type (WT) mice especially within the first 30 h of injury. CD4 KO mice also exhibited significantly increased IL-6 concentrations after the CLP. The CD4 KO mice had an increased concentration of bacteremia as compared with WT mice. Antibiotic treatment decreased mortality in the CD4 KO mice as compared with no changes in the wild mice after CLP. Neutrophils isolated from septic CD4 KO mice showed decreased spontaneous oxidative burst compared with neutrophils taken from septic controls. We examined the role of IFN-gamma by using mice deficient in this cytokine and found these mice to have significantly higher mortality as compared with WT mice. Finally, we detected a 2-fold increase in CD11b+ cells that exhibited intracellular IFN-gamma staining in the peritoneum of WT mice after CLP. The data suggest that CD4+ cells may facilitate the early clearance of bacteria by regulating neutrophils function possibly through an IFN-gamma-dependent mechanism.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Interferon-gamma/metabolism , Sepsis/blood , Animals , CD11b Antigen/biosynthesis , CD8-Positive T-Lymphocytes/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-6/biosynthesis , Male , Mice , Mice, Knockout , Respiratory Burst , Wounds and Injuries/blood
20.
Shock ; 28(6): 684-93, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17607156

ABSTRACT

Recent publications have demonstrated that human resident and inflammatory monocyte (IM) subpopulations have equivalents in rodents. The effect of thermal injury upon these subpopulations has not been studied. Mice were given a scald burn and killed on postburn days (PBDs) 2, 4, and 8. Bone marrow, blood, and spleen white cells were isolated, and the percentage of resident monocytes (CD11b LY6C), IMs (CD11b LY6C), and monocyte progenitors (macrophage-colony-forming unit [M-CFU]) were determined. The ability of each monocyte population to make TNF-alpha was determined by intracellular cytokine staining. Finally, the ability of sorted fractions from PBD 8 spleen to inhibit lymphocyte proliferation was performed. We noted that there was an increase in M-CFU in the blood and spleen at PBD 8, but the marrow only had a nonsignificant increase in M-CFU. All compartments showed a significant increase in the number of IMs by PBD 8, but no significant changes in resident monocytes were seen. In all compartments, IMs were a major source of TNF-alpha. The postburn increase in IMs and monocyte progenitors in the spleen was accompanied by an increase in the monocyte chemokine monocyte chemoattractant protein 1 and constitutively high levels of the progenitor chemokine stromal-derived factor 1alpha. After burn injury, mice deficient in the receptor for soluble TNF-alpha had equal levels of splenic M-CFU and monocytes, as did wild-type mice, suggesting that this cytokine is not essential for this effect. We conclude that in this model, IMs are a significant source of in vivo TNF-alpha.


Subject(s)
Burns/pathology , Inflammation/pathology , Monocytes/cytology , Animals , Bone Marrow Cells/immunology , Burns/blood , Burns/immunology , Cell Proliferation , Chemokine CCL2/metabolism , Cytokines/metabolism , Flow Cytometry , Humans , Inflammation/blood , Mice , Models, Biological , Monocytes/immunology , Monocytes/metabolism , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/immunology , Peptide Fragments/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Spleen/cytology , Spleen/immunology , Tumor Necrosis Factor Decoy Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...