Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(9): 16260-16272, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859258

ABSTRACT

Spiking neural networks (SNNs) are bio-inspired neural networks that - to an extent - mimic the workings of our brains. In a similar fashion, event-based vision sensors try to replicate a biological eye as closely as possible. In this work, we integrate both technologies for the purpose of classifying micro-particles in the context of label-free flow cytometry. We follow up on our previous work in which we used simple logistic regression with binary labels. Although this model was able to achieve an accuracy of over 98%, our goal is to utilize the system for a wider variety of cells, some of which may have less noticeable morphological variations. Therefore, a more advanced machine learning model like the SNNs discussed here would be required. This comes with the challenge of training such networks, since they typically suffer from vanishing gradients. We effectively apply the surrogate gradient method to overcome this issue achieving over 99% classification accuracy on test data for a four-class problem. Finally, rather than treating the neural network as a black box, we explore the dynamics inside the network and make use of that to enhance its accuracy and sparsity.


Subject(s)
Flow Cytometry , Neural Networks, Computer , Flow Cytometry/methods , Machine Learning , Humans , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...