Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Ann Anat ; 235: 151670, 2021 May.
Article En | MEDLINE | ID: mdl-33444741

BACKGROUND: The lungs of premature and term babies are structurally different from the adult lungs. Preterm lungs are underdeveloped, non-compliant in terms of breathing, often need mechanical ventilation and these patients commonly develop syndromes as a consequence of their prematurity, such as bronchopulmonary dysplasia (BPD). Surfactant protein SP-D could be a therapy for BPD. However, there is a need for an animal model that resembles the structural characteristics of premature lungs to test SP-D and future molecules that will target the newborn population. The aim of this study was to develop and validate a pre-clinical model of early alveolarization and structurally premature lungs in 10-day-old rats, and establish the dose safety and distribution of rhSP-D administered intratracheally to premature lungs. METHODS: Ten-day-old Sprague Dawley rats were selected to develop the lung model. SP-D was administered intratracheally. Bronchoalveolar lavage fluid and lungs were collected to evaluate inflammation and SP-D distribution. RESULTS: The 10-day-old rat pup demonstrates early alveolarization features of premature lung development and it tolerates daily intratracheal injections for up to 14 days. The intratracheal administration of rhSP-D, at a dose of 8 mg/kg, does not induce an inflammatory response or histological signs of toxicity in the premature lung, even with a daily administration for 14 days. The pharmacokinetic distribution of rhSP-D in premature lungs has a half-life of ∼9 h, and the incorporation into blood is minimal. CONCLUSIONS: 10-day-old rats are a good pre-clinical animal model of premature lungs, and rhSP-D can be intratracheally administered at doses up to 8 mg/kg without expecting adverse reactions.


Bronchopulmonary Dysplasia , Pulmonary Surfactant-Associated Protein D , Animals , Bronchopulmonary Dysplasia/drug therapy , Humans , Infant, Newborn , Lung , Rats , Rats, Sprague-Dawley , Respiration, Artificial
2.
Am J Respir Crit Care Med ; 202(7): 1024-1031, 2020 10 01.
Article En | MEDLINE | ID: mdl-32459506

Rationale: Bronchopulmonary dysplasia is a heterogeneous lung disease characterized by regions of cysts and fibrosis, but methods for evaluating lung function are limited to whole lung rather than specific regions of interest.Objectives: Respiratory-gated, ultrashort echo time magnetic resonance imaging was used to test the hypothesis that cystic regions of the lung will exhibit a quantifiable Vt that will correlate with ventilator settings and clinical outcomes.Methods: Magnetic resonance images of 17 nonsedated, quiet-breathing infants with severe bronchopulmonary dysplasia were reconstructed into end-inspiration and end-expiration images. Cysts were identified and measured by using density threshold combined with manual identification and segmentation. Regional Vts were calculated by subtracting end-expiration from end-inspiration volumes in total lung, noncystic lung, total-cystic lung, and individual large cysts.Measurements and Main Results: Cystic lung areas averaged larger Vts than noncystic lung when normalized by volume (0.8 ml Vt/ml lung vs. 0.1 ml Vt/ml lung, P < 0.002). Cyst Vt correlates with cyst size (P = 0.012 for total lung cyst and P < 0.002 for large cysts), although there was variability between individual cyst Vt, with 22% of cysts demonstrating negative Vt. Peak inspiratory pressure positively correlated with total lung Vt (P = 0.027) and noncystic Vt (P = 0.015) but not total lung cyst Vt (P = 0.8). Inspiratory time and respiratory rate did not improve Vt of any analyzed lung region.Conclusions: Cystic lung has greater normalized Vt when compared with noncystic lung. Ventilator pressure increases noncystic lung Vt, but inspiratory time does not correlate with Vt of normal or cystic lung.


Bronchopulmonary Dysplasia/diagnostic imaging , Cysts/diagnostic imaging , Magnetic Resonance Imaging/methods , Respiration, Artificial/methods , Tidal Volume/physiology , Bronchopulmonary Dysplasia/physiopathology , Bronchopulmonary Dysplasia/therapy , Cysts/physiopathology , Female , Humans , Imaging, Three-Dimensional , Infant , Infant, Extremely Premature , Infant, Newborn , Male , Respiratory-Gated Imaging Techniques
...