Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 32: 15-26, 2020 02.
Article in English | MEDLINE | ID: mdl-32029225

ABSTRACT

OBJECTIVE: Bone morphogenetic protein 4 (BMP4) adeno-associated viral vectors of serotype 8 (AAV8) gene therapy targeting the liver prevents the development of obesity in initially lean mice by browning the large subcutaneous white adipose tissue (WAT) and enhancing energy expenditure. Here, we examine whether this approach could also reduce established obesity. METHODS: Dietary-induced obese C57BL6/N mice received AAV8 BMP4 gene therapy at 17-18 weeks of age. They were kept on a high-fat diet and phenotypically characterized for an additional 10-12 weeks. Following termination, the mice underwent additional characterization in vitro. RESULTS: Surprisingly, we observed no effect on body weight, browning of WAT, or energy expenditure in these obese mice, but whole-body insulin sensitivity and glucose tolerance were robustly improved. Insulin signaling and insulin-stimulated glucose uptake were increased in both adipose cells and skeletal muscle. BMP4 also decreased hepatic glucose production and reduced gluconeogenic enzymes in the liver, but not in the kidney, in addition to enhancing insulin action in the liver. CONCLUSIONS: Our findings show that BMP4 prevents, but does not reverse, established obesity in adult mice, while it improves insulin sensitivity independent of weight reduction. The BMP antagonist Noggin was increased in WAT in obesity, which may account for the lack of browning.


Subject(s)
Adipose Tissue, Brown , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/therapeutic use , Genetic Therapy , Insulin/metabolism , Obesity/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Bone Morphogenetic Protein 4/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/chemically induced , Signal Transduction
2.
J Cell Commun Signal ; 12(1): 309-318, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29247377

ABSTRACT

Obesity and type 2 diabetes increase worldwide at an epidemic rate. It is expected that by the year 2030 around 500 million people will have diabetes; predominantly type 2 diabetes. The CCN family of proteins has become of interest in both metabolic and other common human diseases because of their effects on mesenchymal stem cell (MSCs) proliferation and differentiation as well as being important regulators of fibrosis. We here review current knowledge of the WNT1 inducible signaling pathway protein 2 (CCN5/WISP2). It has been shown to be an important regulator of both these processes through effects on both the canonical WNT and the TGFß pathways. It is also under normal regulation by the adipogenic commitment factor BMP4, in contrast to conventional canonical WNT ligands, and allows MSCs to undergo normal adipose cell differentiation. CCN5/WISP2 is highly expressed in, and secreted by, MSCs and is an important regulator of MSCs growth. In a transgenic mouse model overexpressing CCN5/WISP2 in the adipose tissue, we have shown that it is secreted and circulating in the blood, the mice develop hypercellular white and brown adipose tissue, have increased lean body mass and enlarged hypercellular hearts. Obese transgenic mice had improved insulin sensitivity. Interestingly, the anti-fibrotic effect of CCN5/WISP2 is protective against heart failure by inhibition of the TGFß pathway. Understanding how CCN5/WISP2 is regulated and signals is important and may be useful for developing new treatment strategies in obesity and metabolic diseases and it can also be a target in regenerative medicine.

3.
Cell Rep ; 20(5): 1038-1049, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28768190

ABSTRACT

We examined the effect of Bone Morphogenetic Protein 4 (BMP4) on energy expenditure in adult mature mice by targeting the liver with adeno-associated viral (AAV) BMP4 vectors to increase circulating levels. We verified the direct effect of BMP4 in inducing a brown oxidative phenotype in differentiating preadipocytes in vitro. AAV-BMP4-treated mice display marked browning of subcutaneous adipocytes, with increased mitochondria and Uncoupling Protein 1 (UCP1). These mice are protected from obesity on a high-fat diet and have increased whole-body energy expenditure, improved insulin sensitivity, reduced liver fat, and reduced adipose tissue inflammation. On a control diet, they show unchanged body weight but improved insulin sensitivity. In contrast, AAV-BMP4-treated mice showed beiging of BAT with reduced UCP1, increased lipids, and reduced hormone-sensitive lipase (HSL). Thus, BMP4 exerts different effects on WAT and BAT, but the overall effect is to enhance insulin sensitivity and whole-body energy expenditure by browning subcutaneous adipose tissue.


Subject(s)
Adipocytes, Brown/metabolism , Bone Morphogenetic Protein 4/biosynthesis , Dependovirus , Genetic Therapy/methods , Obesity/prevention & control , Subcutaneous Fat/metabolism , Animals , Bone Morphogenetic Protein 4/genetics , Energy Metabolism , Male , Mice , Obesity/genetics , Obesity/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
4.
Sci Rep ; 7: 43515, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240264

ABSTRACT

WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.


Subject(s)
Adipose Tissue/metabolism , Gene Expression , Insulin Resistance/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Autocrine Communication , Biomarkers , Body Composition , Body Weight , Bone Morphogenetic Protein 4/metabolism , Cell Count , Cell Proliferation/drug effects , Cell Size , Energy Metabolism , Genotype , Glucose/metabolism , Glucose Tolerance Test , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Hyperplasia , Insulin/metabolism , Lipogenesis/genetics , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , Transforming Growth Factor beta/metabolism
5.
J Biol Chem ; 289(10): 6899-6907, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24451367

ABSTRACT

WNT1-inducible-signaling pathway protein 2 (WISP2) is primarily expressed in mesenchymal stem cells, fibroblasts, and adipogenic precursor cells. It is both a secreted and cytosolic protein, the latter regulating precursor cell adipogenic commitment and PPARγ induction by BMP4. To examine the effect of the secreted protein, we expressed a full-length and a truncated, non-secreted WISP2 in NIH3T3 fibroblasts. Secreted, but not truncated WISP2 activated the canonical WNT pathway with increased ß-catenin levels, its nuclear targeting phosphorylation, and LRP5/6 phosphorylation. It also inhibited Pparg activation and the effect of secreted WISP2 was reversed by the WNT antagonist DICKKOPF-1. Differentiated 3T3-L1 adipose cells were also target cells where extracellular WISP2 activated the canonical WNT pathway, inhibited Pparg and associated adipose genes and, similar to WNT3a, promoted partial dedifferentiation of the cells and the induction of a myofibroblast phenotype with activation of markers of fibrosis. Thus, WISP2 exerts dual actions in mesenchymal precursor cells; secreted WISP2 activates canonical WNT and maintains the cells in an undifferentiated state, whereas cytosolic WISP2 regulates adipogenic commitment.


Subject(s)
Adipogenesis , Adipokines/metabolism , CCN Intercellular Signaling Proteins/metabolism , Mesenchymal Stem Cells/cytology , Repressor Proteins/metabolism , Wnt Signaling Pathway , 3T3-L1 Cells , Adipokines/antagonists & inhibitors , Adipokines/genetics , Animals , CCN Intercellular Signaling Proteins/antagonists & inhibitors , CCN Intercellular Signaling Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , NIH 3T3 Cells , PPAR gamma/genetics , PPAR gamma/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Wnt3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL