Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Science ; 383(6690): 1471-1478, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38547288

Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.


Cerebral Cortex , Cerebrovascular Circulation , Hypoxia, Brain , Luminescent Measurements , Oxygen Saturation , Oxygen , Animals , Mice , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Oxygen/blood , Oxygen/metabolism , Partial Pressure , Hypoxia, Brain/blood , Hypoxia, Brain/diagnostic imaging , Hypoxia, Brain/metabolism , Vasodilation , Luminescent Measurements/methods , Luciferases/genetics , Luciferases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hypercapnia/blood , Hypercapnia/diagnostic imaging , Hypercapnia/metabolism
2.
PLoS One ; 8(12): e81177, 2013.
Article En | MEDLINE | ID: mdl-24312533

Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS) compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations.


Astrocytes/physiology , Auditory Cortex/physiology , Calcium Signaling/physiology , Evoked Potentials, Auditory/physiology , Finches/physiology , Neurons/physiology , Animals
...