Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39386545

ABSTRACT

Caloric restriction (CR) is a widely recognized geroprotective intervention that slows or prevents Alzheimer's disease (AD) in animal models. CR is typically implemented via feeding mice a single meal per day; as CR mice rapidly consume their food, they are subject to a prolonged fast between meals. While CR has been shown to improve metabolic and cognitive functions and suppress pathological markers in AD mouse models, the specific contributions of fasting versus calorie reduction remains unclear. Here, we investigated the contribution of fasting and energy restriction to the beneficial effects of CR on AD progression. To test this, we placed 6-month-old 3xTg mice on one of several diet regimens, allowing us to dissect the effects of calories and fasting on metabolism, AD pathology, and cognition. We find that energy restriction alone, without fasting, was sufficient to improve glucose tolerance and reduce adiposity in both sexes, and to reduce Aß plaques and improve aspects of cognitive performance in females. However, we find that a prolonged fast between meals is necessary for many of the benefits of CR, including improved insulin sensitivity, reduced phosphorylation of tau, decreased neuroinflammation, inhibition of mTORC1 signaling, and activation of autophagy, as well as for the full cognitive benefits of CR. Finally, we find that fasting is essential for the benefits of CR on survival in male 3xTg mice. Overall, our results demonstrate that fasting is required for the full benefits of a CR diet on the development and progression of AD in 3xTg mice, and suggest that both when and how much we eat influences the development and progress of AD.

2.
Geroscience ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39271570

ABSTRACT

Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition in females, suggesting that the benefits of acarbose on AD may be largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a WD.

3.
Cell Rep ; 43(9): 114663, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39167490

ABSTRACT

Calorie restriction (CR) extends lifespan and healthspan in diverse species. Comparing ad libitum- and CR-fed mice is challenging due to their significantly different feeding patterns, with CR-fed mice consuming their daily meal in 2 h and then subjecting themselves to a prolonged daily fast. Here, we examine how ad libitum- and CR-fed mice respond to tests performed at various times and fasting durations and find that the effects of CR-insulin sensitivity, circulating metabolite levels, and mechanistic target of rapamycin 1 (mTORC1) activity-result from the specific temporal conditions chosen, with CR-induced improvements in insulin sensitivity observed only after a prolonged fast, and the observed differences in mTORC1 activity between ad libitum- and CR-fed mice dependent upon both fasting duration and the specific tissue examined. Our results demonstrate that much of our understanding of the effects of CR are related to when, relative to feeding, we choose to examine the mice.


Subject(s)
Caloric Restriction , Fasting , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Male , Insulin Resistance , Time Factors , Insulin/metabolism , Insulin/blood
4.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005334

ABSTRACT

Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition, suggesting that the benefits of acarbose on AD are largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a Western diet.

5.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895446

ABSTRACT

The amino acid composition of the diet has recently emerged as a critical regulator of metabolic health. Consumption of the branched-chain amino acid isoleucine is positively correlated with body mass index in humans, and reducing dietary levels of isoleucine rapidly improves the metabolic health of diet-induced obese male C57BL/6J mice. However, it is unknown how sex, strain, and dietary isoleucine intake may interact to impact the response to a Western Diet (WD). Here, we find that although the magnitude of the effect varies by sex and strain, reducing dietary levels of isoleucine protects C57BL/6J and DBA/2J mice of both sexes from the deleterious metabolic effects of a WD, while increasing dietary levels of isoleucine impairs aspects of metabolic health. Despite broadly positive responses across all sexes and strains to reduced isoleucine, the molecular response of each sex and strain is highly distinctive. Using a multi-omics approach, we identify a core sex- and strain- independent molecular response to dietary isoleucine, and identify mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype. Intriguingly, the metabolic effects of reduced isoleucine in mice are not associated with FGF21 - and we find that in humans plasma FGF21 levels are likewise not associated with dietary levels of isoleucine. Finally, we find that foods contain a range of isoleucine levels, and that consumption of dietary isoleucine is lower in humans with healthy eating habits. Our results demonstrate that the dietary level of isoleucine is critical in the metabolic and molecular response to a WD, and suggest that lowering dietary levels of isoleucine may be an innovative and translatable strategy to protect from the negative metabolic consequences of a WD.

6.
Nat Commun ; 15(1): 5217, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890307

ABSTRACT

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.


Subject(s)
Alzheimer Disease , Brain , Diet, Protein-Restricted , Disease Models, Animal , Disease Progression , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Female , Male , Mice , Brain/metabolism , Brain/pathology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy , Glucose Intolerance/metabolism , Sphingolipids/metabolism , Cognition , Mice, Inbred C57BL
7.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-36798157

ABSTRACT

In defiance of the paradigm that calories from all sources are equivalent, we and others have shown that dietary protein is a dominant regulator of healthy aging. The restriction of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan when initiated in young or adult mice. However, many interventions are less efficacious or even deleterious when initiated in aged animals. Here, we investigate the physiological, metabolic, and molecular consequences of consuming a diet with a 67% reduction of all amino acids (Low AA), or of isoleucine alone (Low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. We find that both diet regimens effectively reduce adiposity and improve glucose tolerance, which were benefits that were not mediated by reduced calorie intake. Both diets improve specific aspects of frailty, slow multiple molecular indicators of aging rate, and rejuvenate the aging heart and liver at the molecular level. These results demonstrate that Low AA and Low Ile diets can drive youthful physiological and molecular signatures, and support the possibility that these dietary interventions could help to promote healthy aging in older adults.

8.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106163

ABSTRACT

Dietary protein and essential amino acid (EAA) restriction promotes favorable metabolic reprogramming, ultimately resulting in improvements to both health and lifespan. However, as individual EAAs have distinct catabolites and engage diverse downstream signaling pathways, it remains unclear to what extent shared or AA-specific molecular mechanisms promote diet-associated phenotypes. Here, we investigated the physiological and molecular effects of restricting either dietary methionine, leucine, or isoleucine (Met-R, Leu-R, and Ile-R) for 3 weeks in C57BL/6J male mice. While all 3 AA-depleted diets promoted fat and lean mass loss and slightly improved glucose tolerance, the molecular responses were more diverse; while hepatic metabolites altered by Met-R and Leu-R were highly similar, Ile-R led to dramatic changes in metabolites, including a 3-fold reduction in the oncometabolite 2-hydroxyglutarate. Pathways regulated in an EAA-specific manner included glycolysis, the pentose phosphate pathway (PPP), nucleotide metabolism, the TCA cycle and amino acid metabolism. Transcriptiome analysis and global profiling of histone post-translational modifications (PTMs) revealed different patterns of responses to each diet, although Met-R and Leu-R again shared similar transcriptional responses. While the pattern of global histone PTMs were largely unique for each dietary intervention, Met-R and Ile-R had similar changes in histone-3 methylation/acetylation PTMs at lysine-9. Few similarities were observed between the physiological or molecular responses to EAA restriction and treatment with rapamycin, an inhibitor of the mTORC1 AA-responsive protein kinase, indicating the response to EAA restriction may be largely independent of mTORC1. Together, these results demonstrate that dietary restriction of individual EAAs has unique, EAA-specific effects on the hepatic metabolome, epigenome, and transcriptome, and suggests that the specific EAAs present in dietary protein may play a key role at regulating health at the molecular level.

9.
Cell Metab ; 35(11): 1976-1995.e6, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37939658

ABSTRACT

Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.


Subject(s)
Isoleucine , Longevity , Male , Female , Animals , Mice , Isoleucine/pharmacology , Health Promotion , Mice, Inbred C57BL , Amino Acids, Branched-Chain/metabolism
10.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790423

ABSTRACT

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

11.
J Gerontol A Biol Sci Med Sci ; 78(11): 1953-1963, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37354128

ABSTRACT

Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.


Subject(s)
Body Composition , Caloric Restriction , Male , Animals , Mice , Mice, Inbred C57BL , Aging , Longevity
12.
J Physiol ; 601(11): 2139-2163, 2023 06.
Article in English | MEDLINE | ID: mdl-36086823

ABSTRACT

Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice. Specifically reducing dietary levels of histidine by 67% reduces the weight gain of young, lean male mice, reducing both adipose and lean mass without altering glucose metabolism, and rapidly reverses diet-induced obesity and hepatic steatosis in diet-induced obese male mice, increasing insulin sensitivity. This normalization of metabolic health was associated not with caloric restriction or increased activity, but with increased energy expenditure. Surprisingly, the effects of histidine restriction do not require the energy balance hormone Fgf21. Histidine restriction that was started in midlife promoted leanness and glucose tolerance in aged males but not females, but did not affect frailty or lifespan in either sex. Finally, we demonstrate that variation in dietary histidine levels helps to explain body mass index differences in humans. Overall, our findings demonstrate that dietary histidine is a key regulator of weight and body composition in male mice and in humans, and suggest that reducing dietary histidine may be a translatable option for the treatment of obesity. KEY POINTS: Protein restriction (PR) promotes metabolic health in rodents and humans and extends rodent lifespan. Restriction of specific individual essential amino acids can recapitulate the benefits of PR. Reduced histidine promotes leanness and increased energy expenditure in male mice. Reduced histidine does not extend the lifespan of mice when begun in midlife. Dietary levels of histidine are positively associated with body mass index in humans.


Subject(s)
Histidine , Thinness , Male , Humans , Animals , Mice , Aged , Histidine/metabolism , Mice, Inbred C57BL , Diet , Obesity/metabolism , Proteins , Energy Metabolism
13.
Aging Cell ; 21(12): e13721, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36199173

ABSTRACT

Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.


Subject(s)
Caloric Restriction , Longevity , Sirtuin 3 , Animals , Male , Mice , Acetylation , Aging/metabolism , Longevity/genetics , Mitochondria/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Oxidative Stress/genetics
14.
Aging Cell ; 21(4): e13585, 2022 04.
Article in English | MEDLINE | ID: mdl-35266264

ABSTRACT

Dietary macronutrient composition influences both hepatic function and aging. Previous work suggested that longevity and hepatic gene expression levels were highly responsive to dietary protein, but almost unaffected by other macronutrients. In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice were significantly associated with changes in dietary protein (5%-30%), fat (20%-60%), and carbohydrate (10%-75%), respectively. More genes in aging-related pathways (notably mTOR, IGF-1, and NF-kappaB) had significant correlations with dietary fat intake than protein and carbohydrate intake, and the pattern of gene expression changes in relation to dietary fat intake was in the opposite direction to the effect of graded levels of caloric restriction consistent with dietary fat having a negative impact on aging. We found 732, 808, and 995 serum metabolites were significantly correlated with dietary protein (5%-30%), fat (8.3%-80%), and carbohydrate (10%-80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine-1-phosphate signaling was the significantly affected pathway by dietary fat content which has also been identified as significant changed metabolic pathway in the previous caloric restriction study. Our results suggest dietary fat has major impact on aging-related gene and metabolic pathways compared with other macronutrients.


Subject(s)
Metabolome , Transcriptome , Animals , Carbohydrates/pharmacology , Dietary Carbohydrates/metabolism , Dietary Carbohydrates/pharmacology , Dietary Fats/pharmacology , Dietary Proteins/metabolism , Dietary Proteins/pharmacology , Energy Intake , Liver/metabolism , Mice , Nutrients , Transcriptome/genetics
15.
Cell Metab ; 34(2): 209-226.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108511

ABSTRACT

Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.


Subject(s)
Diet, Protein-Restricted , Insulin Resistance , Animals , Energy Metabolism/genetics , Female , Fibroblast Growth Factors/metabolism , Genetic Background , Insulin Resistance/genetics , Liver/metabolism , Male , Mice
16.
Nat Rev Mol Cell Biol ; 23(1): 56-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34518687

ABSTRACT

Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.


Subject(s)
Caloric Restriction , Health , Longevity/physiology , Animals , Disease Models, Animal , Humans , Oxidative Stress
17.
Aging Biol ; 12022.
Article in English | MEDLINE | ID: mdl-37186544

ABSTRACT

Calorie restriction (CR) promotes healthspan and extends the lifespan of diverse organisms, including mice, and there is intense interest in understanding the molecular mechanisms by which CR functions. Some studies have demonstrated that CR induces fibroblast growth factor 21 (FGF21), a hormone that regulates energy balance and that when overexpressed, promotes metabolic health and longevity in mice, but the role of FGF21 in the response to CR has not been fully investigated. We directly examined the role of FGF21 in the physiological and metabolic response to a CR diet by feeding Fgf21-/- and wild-type control mice either ad libitum (AL) diet or a 30% CR diet for 15 weeks. Here, we find that FGF21 is largely dispensable for CR-induced improvements in body composition and energy balance, but that lack of Fgf21 blunts CR-induced changes aspects of glucose regulation and insulin sensitivity in females. Surprisingly, despite not affecting CR-induced changes in energy expenditure, loss of Fgf21 significantly blunts CR-induced beiging of white adipose tissue in male but not female mice. Our results shed new light on the molecular mechanisms involved in the beneficial effects of a CR diet, clarify that FGF21 is largely dispensable for the metabolic effects of a CR diet, and highlight a sex-dependent role for FGF21 in the molecular adaptation of white adipose tissue to CR.

19.
Cell Metab ; 33(12): 2303-2304, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879234

ABSTRACT

There is significant interest in identifying compounds that mimic the effects of dietary restriction on healthy aging. In the latest issue of Cell Metabolism, Le Couteur et al. (2021) use a nutritional geometry approach to survey the effects of three such compounds on the hepatic proteome across a changing dietary landscape.


Subject(s)
Diet , Food
20.
Nat Metab ; 3(10): 1327-1341, 2021 10.
Article in English | MEDLINE | ID: mdl-34663973

ABSTRACT

Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting. Here we show that a prolonged fast is necessary for key metabolic, molecular and geroprotective effects of a CR diet. Using a series of feeding regimens, we dissect the effects of calories and fasting, and proceed to demonstrate that fasting alone recapitulates many of the physiological and molecular effects of CR. Our results shed new light on how both when and how much we eat regulate metabolic health and longevity, and demonstrate that daily prolonged fasting, and not solely reduced caloric intake, is likely responsible for the metabolic and geroprotective benefits of a CR diet.


Subject(s)
Aging/metabolism , Caloric Restriction , Animals , Longevity/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL