Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834005

ABSTRACT

Multiple polyposes are heterogeneous diseases with different underlying molecular backgrounds, sharing a common symptom: the presence of transforming into cancerous intestinal polyps. Recent reports have indicated biallelic mutations in the NTHL1 gene, which is involved in base excision repair (BER), as predisposing to an elevated risk of colorectal cancer (CRC). We aimed to evaluate the significance of the p.Q82* truncating variant in predisposition to intestinal polyposis by assessing its frequency in polyposis patients. We genotyped 644 Polish patients and 634 control DNA samples using high-resolution melting analysis (HRM) and Sanger sequencing. We found the p.Q82* variant in four polyposis patients; in three, it was homozygous (OR = 6.90, p value = 0.202). Moreover, the p.R92C mutation was detected in one patient. We also looked more closely at the disease course in patients carrying NTHL1 mutations. Two homozygous patients also presented other neoplasia. In the family case, we noticed the earlier presence of polyps in the proband and early hepatoblastoma in his brother. We cannot univocally confirm the relationship of p.Q82* with an increased risk of CRC. However, homozygous p.Q82* was more frequent by 10-fold in patients without other mutations identified, which makes NTHL1 gene screening in this group reasonable.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Male , Humans , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/diagnosis , Poland , Genetic Predisposition to Disease , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Mutation , Deoxyribonuclease (Pyrimidine Dimer)/genetics
2.
Genes (Basel) ; 13(12)2022 12 10.
Article in English | MEDLINE | ID: mdl-36553592

ABSTRACT

Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir-Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Genetic Predisposition to Disease , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Neoplastic Syndromes, Hereditary/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
3.
Hum Mol Genet ; 31(24): 4193-4206, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35866590

ABSTRACT

Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation/genetics , Cholesterol , Membrane Proteins/genetics
4.
J Appl Genet ; 63(3): 543-555, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35396646

ABSTRACT

Of all known airborne diseases in the twenty-first century, coronavirus disease 19 (COVID-19) has the highest infection and death rate. Over the past few decades, animal origin viral diseases, notably those of bats-linked, have increased many folds in humans with cross-species transmissions noted and the ongoing COVID-19 pandemic has emphasized the importance of understanding the evolution of natural hosts in response to viral pathogens. Cross-species transmissions are possible due to the possession of the angiotensin-converting enzyme 2 (ACE2) receptor in animals. ACE2 recognition by SARS-CoV-2 is a critical determinant of the host range, interspecies transmission, and viral pathogenesis. Thus, the phenomenon of breaking the cross-species barrier is mainly associated with mutations in the receptor-binding domain (RBD) of the spike (S) protein that interacts with ACE2. In this review, we raise the issue of cross-species transmission based on sequence alignment of S protein. Based on previous reports and our observations, we can conclude that the occurrence of one of two mutations D614G or Y453F is sufficient for infection of minks by SARS-CoV-2 from humans. Unfortunately, D614G is observed in the world's most common line of virus B.1.1.7 and the latest SARS-CoV-2 variants B.1.617.1, B.1.617.2, and B.1.617.3 too.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Host Specificity , Humans , Mink/genetics , Mink/metabolism , Mink/virology , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...