Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573429

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Elastin-Like Polypeptides , Silk , Silk/genetics , Arthropod Proteins , Elastin/genetics , Elastin/chemistry , Elastin/metabolism , Nicotiana/genetics , Recombinant Fusion Proteins/genetics
2.
J Biotechnol ; 217: 100-8, 2016 Jan 10.
Article En | MEDLINE | ID: mdl-26608794

The thermal properties of materials provide valuable data for quality monitoring and the rational design of process steps where heating is required. Here we report a rapid, simple and reliable technique that determines the most important thermal properties of leaves, i.e. the specific heat capacity (cp) and thermal conductivity (λ). Such data are useful when leaves are heated during processing, e.g. for the precipitation of host cell proteins during the extraction of high-value products such as recombinant proteins produced by molecular farming. The cp of tobacco (Nicotiana tabacum) and Nicotiana benthamiana leaves was determined by infrared measurement of the temperature increase caused by a near-infrared laser pulse of defined length and intensity. We used the sample temperature profiles to calculate λ based on exponential fits of the temperature decline, taking convective heat transfer and thermal radiation into account. We found that the average cp was 3661 ± 323 J kg(-1) K(-1) (n=19) for tobacco and 2253 ± 285 J kg(-1) K(-1) (n=25) for N. benthamiana, whereas the average λ was 0.49 ± 0.13 (n=19) for tobacco and 0.41 ± 0.20 (n=25) Jm(-1) s(-1)K(-1) for N. benthamiana. These values are similar to those established for other plant species by photothermal imaging and other methods. The cp and λ values of leaves can be determined easily using our non-invasive method, which is therefore suitable for the in-line or at-line monitoring of plants, e.g. during the highly regulated production of biopharmaceutical proteins.


Lasers , Nicotiana/chemistry , Plant Leaves/chemistry , Thermal Conductivity , Infrared Rays , Models, Biological , Plant Leaves/metabolism , Recombinant Proteins/chemistry , Temperature , Thermodynamics , Nicotiana/metabolism
...