Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Am J Physiol Heart Circ Physiol ; 305(6): H913-22, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23832699

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) have been recently derived and are used for basic research, cardiotoxicity assessment, and phenotypic screening. However, the hiPS-CM phenotype is dependent on their derivation, age, and culture conditions, and there is disagreement as to what constitutes a functional hiPS-CM. The aim of the present study is to characterize the temporal changes in hiPS-CM phenotype by examining five determinants of cardiomyocyte function: gene expression, ion channel functionality, calcium cycling, metabolic activity, and responsiveness to cardioactive compounds. Based on both gene expression and electrophysiological properties, at day 30 of differentiation, hiPS-CMs are immature cells that, with time in culture, progressively develop a more mature phenotype without signs of dedifferentiation. This phenotype is characterized by adult-like gene expression patterns, action potentials exhibiting ventricular atrial and nodal properties, coordinated calcium cycling and beating, suggesting the formation of a functional syncytium. Pharmacological responses to pathological (endothelin-1), physiological (IGF-1), and autonomic (isoproterenol) stimuli similar to those characteristic of isolated adult cardiac myocytes are present in maturing hiPS-CMs. In addition, thyroid hormone treatment of hiPS-CMs attenuated the fetal gene expression in favor of a more adult-like pattern. Overall, hiPS-CMs progressively acquire functionality when maintained in culture for a prolonged period of time. The description of this evolving phenotype helps to identify optimal use of hiPS-CMs for a range of research applications.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Gene Expression Regulation, Developmental/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Cell Differentiation/physiology , Cell Line , Humans , Ion Channels/physiology , Myocytes, Cardiac/classification , Phenotype , Pluripotent Stem Cells/classification
2.
Bioorg Med Chem Lett ; 20(1): 371-4, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19926282

ABSTRACT

The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.


Subject(s)
Pyrrolidines/chemistry , Receptors, Progesterone/agonists , Animals , Binding Sites , Carbamates/chemistry , Crystallography, X-Ray , ERG1 Potassium Channel , Endometriosis/drug therapy , Ether-A-Go-Go Potassium Channels/metabolism , Female , Humans , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacokinetics , Rats , Receptors, Progesterone/metabolism , Sulfonamides/chemistry
3.
Bioorg Med Chem Lett ; 19(17): 4916-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19664922

ABSTRACT

High throughput screening of the corporate compound collection led to the identification of a novel series of 2-amino-9-aryl-3-cyano-4-methyl-7-oxo-6,7,8,9-tetrahydropyrido[2',3':4,5]thieno[2,3-b]pyridine derivatives as selective PR agonists. Initial SAR exploration leading to potent and selective agonists 9 and 11, X-ray crystal structure of 9 bound to PR-LBD and preliminary developability data are described.


Subject(s)
Pyridines/chemistry , Pyridones/chemistry , Receptors, Progesterone/agonists , Thiophenes/chemistry , Animals , Binding Sites , Computer Simulation , Crystallography, X-Ray , Humans , Microsomes, Liver/metabolism , Molecular Conformation , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Rats , Receptors, Progesterone/metabolism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/pharmacology
4.
Steroids ; 74(13-14): 1015-24, 2009.
Article in English | MEDLINE | ID: mdl-19665469

ABSTRACT

Endometriosis, defined as the presence of endometrial glands and stroma at extra-uterine sites, is a gynecological condition that affects women of reproductive age. Consistent with its uterine origins, endometriotic lesions and resulting symptoms are hormonally responsive. To investigate Progesterone Receptor (PR)-based therapies, we measured physiological endpoints and gene expression in rat models of uterine cell estrogenic activity. Estrogen-induced ELT-3 rat leiomyoma cell proliferation was significantly inhibited by progesterone (P4), while the antiprogestin RU486 or the Selective PR Modulator (SPRM) asoprisnil, did not block proliferation. Stromal cell-derived factor-1 (SDF-1/Cxcl12) gene expression was induced by estrogen, and was repressed by the Selective Estrogen Receptor Modulators (SERMs), the antiestrogen ICI 182,780, and P4, but not by RU486 or the ERbeta-selective ligand ERB-041. In ELT-3 cells, asoprisnil demonstrated partial PR agonism on SDF-1 gene repression. Magnetic Resonance Imaging was used to monitor development of ectopic cysts in a rat surgical model of endometriosis. SERMs and P4 significantly decreased cyst volumes comparably by approximately 60%. However, ERB-041 and asoprisnil had no effect on cyst volume, and RU486 increased cyst volume by 20%. SDF-1 expression was modestly, but significantly, increased in the cyst compared to eutopic uterus, and P4 and raloxifene could repress the expression. We showed that SDF-1 was similarly regulated in human cells. These data suggest that transcriptional regulation of SDF-1 is a surrogate marker of estrogenic activities via ERalpha in rat uterine cells, and that SDF-1 repression by PR agonists can predict the ability to oppose the actions of estrogen in vivo.


Subject(s)
Chemokine CXCL12/antagonists & inhibitors , Endometriosis/drug therapy , Progesterone/therapeutic use , Progestins/therapeutic use , Receptors, Progesterone/agonists , Selective Estrogen Receptor Modulators/therapeutic use , Uterus/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokine CXCL12/agonists , Chemokine CXCL12/metabolism , Cysts/drug therapy , Cysts/metabolism , Cysts/pathology , Disease Models, Animal , Endometriosis/metabolism , Endometriosis/pathology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrenes/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Fulvestrant , Gene Expression , Hormone Antagonists/pharmacology , Humans , Mifepristone/pharmacology , Oxazoles/pharmacology , Oximes/pharmacology , Progesterone/pharmacology , Progestins/pharmacology , Rats , Selective Estrogen Receptor Modulators/pharmacology , Uterus/metabolism
5.
Bioorg Med Chem Lett ; 19(16): 4777-80, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19595590

ABSTRACT

Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.


Subject(s)
Pyrrolidines/chemistry , Receptors, Progesterone/agonists , Administration, Oral , Animals , Binding Sites , Computer Simulation , Crystallography, X-Ray , Drug Design , Models, Animal , Protein Structure, Tertiary , Pyrrolidines/administration & dosage , Pyrrolidines/chemical synthesis , Rats , Receptors, Progesterone/metabolism
6.
Bioorg Med Chem Lett ; 19(16): 4664-8, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19616429

ABSTRACT

We have designed and synthesized a novel series of pyrrolidinones as progesterone receptor partial agonists. Compounds from this series had improved AR selectivity, rat pharmacokinetic properties, and in vivo potency compared to the lead compound. In addition, these compounds had improved selectivity against hERG channel inhibition.


Subject(s)
Pyrrolidinones/chemistry , Receptors, Progesterone/agonists , Administration, Oral , Animals , Binding Sites , Drug Discovery , Ether-A-Go-Go Potassium Channels/metabolism , Haplorhini , Humans , Pyrrolidinones/chemical synthesis , Pyrrolidinones/pharmacokinetics , Rats , Receptors, Progesterone/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 19(10): 2637-41, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19376703

ABSTRACT

Two classes of amino acid-derived heterocyclic progesterone receptor ligands were developed to address the metabolic issues posed by the dimethyl amide functionality of the lead compound (1). The tetrazole-derived ligands behaved as potent partial agonists, while the 1,2,4-triazole ligands behaved as potent full agonists.


Subject(s)
Receptors, Progesterone/agonists , Tetrazoles/chemical synthesis , Amino Acids/chemistry , Animals , Rats , Receptors, Progesterone/metabolism , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacokinetics
8.
Mol Endocrinol ; 21(5): 1066-81, 2007 May.
Article in English | MEDLINE | ID: mdl-17356170

ABSTRACT

Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.


Subject(s)
Estrenes/chemistry , Estrenes/pharmacology , Oximes/chemistry , Oximes/pharmacology , Receptors, Progesterone/drug effects , Breast Neoplasms , Cell Line, Tumor , Crystallography, X-Ray , Estradiol/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Models, Molecular , Plasmids , Polymerase Chain Reaction , Protein Conformation , Receptors, Progesterone/chemistry , Receptors, Progesterone/genetics , Receptors, Progesterone/physiology , Transfection
9.
J Med Chem ; 49(7): 2210-21, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16570917

ABSTRACT

Inhibitors of transforming growth factor beta (TGF-beta) type I receptor (ALK5) offer a novel approach for the treatment of fibrotic diseases such as renal, hepatic, and pulmonary fibrosis. The optimization of a novel phenylpyridine pyrazole series (1a) led to the identification of potent, selective, and orally active ALK5 inhibitors. The cellular potency and pharmacokinetics profiles of these derivatives were improved and several compounds presented antifibrotic activity when orally administered to rats in an acute liver model of dimethylnitrosamine- (DMN-) induced expression of collagen IA1 mRNA, a major gene contributing to excessive extra cellular matrix deposit. One of the most potent ALK5 inhibitors identified in this chemical series, compound 13d (GW788388), reduced the expression of collagen IA1 by 80% at a dose of 1 mg/kg twice a day (b.i.d.). This compound significantly reduced the expression of collagen IA1 mRNA when administered orally at 10 mg/kg once a day (u.i.d.) in a model of puromycin aminonucleoside-induced renal fibrosis.


Subject(s)
Activin Receptors, Type I/antagonists & inhibitors , Benzamides/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Acute Disease , Administration, Oral , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Collagen Type I/antagonists & inhibitors , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Dimethylnitrosamine , Fibrosis , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Male , Models, Molecular , Protein Serine-Threonine Kinases , Puromycin Aminonucleoside , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Structure-Activity Relationship
10.
J Pharmacol Exp Ther ; 313(3): 943-51, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15769863

ABSTRACT

SB-525334 (6-[2-tert-butyl-5-(6-methyl-pyridin-2-yl)-1H-imidazol-4-yl]-quinoxaline) has been characterized as a potent and selective inhibitor of the transforming growth factor-beta1 (TGF-beta1) receptor, activin receptor-like kinase (ALK5). The compound inhibited ALK5 kinase activity with an IC(50) of 14.3 nM and was approximately 4-fold less potent as an inhibitor of ALK4 (IC(50) = 58.5 nM). SB-525334 was inactive as an inhibitor of ALK2, ALK3, and ALK6 (IC(50) > 10,000 nM). In cell-based assays, SB-525334 (1 microM) blocked TGF-beta1-induced phosphorylation and nuclear translocation of Smad2/3 in renal proximal tubule cells and inhibited TGF-beta1-induced increases in plasminogen activator inhibitor-1 (PAI-1) and procollagen alpha1(I) mRNA expression in A498 renal epithelial carcinoma cells. In view of this profile, SB-525334 was used to investigate the role of TGF-beta1 in the acute puromycin aminonucleoside (PAN) rat model of renal disease, a model of nephritis-induced renal fibrosis. Orally administered doses of 1, 3, or 10 mg/kg/day SB-525334 for 11 days produced statistically significant reductions in renal PAI-1 mRNA. Also, the compound produced dose-dependent decreases in renal procollagen alpha1(I) and procollagen alpha1(III) mRNA, which reached statistical significance at the 10-mg/kg/day dose when compared with vehicle-treated PAN controls. Furthermore, PAN-induced proteinuria was significantly inhibited at the 10-mg/kg/day dose level. These results provide further evidence for the involvement of TGF-beta1 in the profibrotic changes that occur in the PAN model and for the first time, demonstrate the ability of a small molecule inhibitor of ALK5 to block several of the markers that are predictive of fibrosis and renal injury in this model.


Subject(s)
Kidney/pathology , Nephritis/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Puromycin/toxicity , Transforming Growth Factor beta/antagonists & inhibitors , Activin Receptors/antagonists & inhibitors , Animals , Biomarkers , Cell Line, Tumor , Collagen Type I/genetics , Dose-Response Relationship, Drug , Fibrosis , Humans , Nephritis/metabolism , Phosphorylation , Plasminogen Activator Inhibitor 1/genetics , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Transforming Growth Factor beta/physiology , Transforming Growth Factor beta1
11.
Auton Neurosci ; 107(2): 85-98, 2003 Sep 30.
Article in English | MEDLINE | ID: mdl-12963419

ABSTRACT

The present study tested the hypothesis that, in normal male rats, chronic changes in salt intake alter the levels of tyrosine hydroxylase and the norepinephrine transporter in sympathetic ganglia. Increasing dietary salt (from 0.02% to 1%, 4% or 8% NaCl in rat chow) decreased (p<0.05) the mRNA levels of tyrosine hydroxylase and the norepinephrine transporter in the adrenal gland, superior cervical ganglia and celiac ganglia. In addition, tyrosine hydroxylase and norepinephrine transporter protein levels were decreased (p<0.05) in the adrenal gland. To test the hypothesis that NaCl acts directly on postganglionic neurons to suppress the expression of these proteins, it was determined if increases in NaCl concentrations, of a magnitude achieved during increases in dietary salt in vivo, suppress expression of tyrosine hydroxylase and the norepinephrine transporter in cultured sympathetic neurons in vitro. Increased dietary salt increased plasma NaCl concentrations each by up to 4-6 mEq l(-1) (p<0.05), with the greatest increases occurring at night when the rats consume most of their food. In addition, NaCl added to cultured neurons decreased tyrosine hydroxylase and norepinephrine transporter protein and mRNA levels, and norepinephrine uptake; however, the NaCl concentration increases required were 15-30 mEq l(-1). These data suggest that increased dietary salt can influence the activity of the sympathetic nervous system by suppressing the levels of tyrosine hydroxylase and the norepinephrine transporter. While increased NaCl levels can act directly on neurons to suppress these proteins, this action may occur in vivo only in severe pathophysiological states, but not during increases in dietary salt without the synergistic effect of other factors.


Subject(s)
Ganglia, Sympathetic/metabolism , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/pharmacology , Superior Cervical Ganglion/drug effects , Symporters/antagonists & inhibitors , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Animals , Dose-Response Relationship, Drug , Ganglia, Sympathetic/drug effects , Male , Norepinephrine Plasma Membrane Transport Proteins , RNA, Messenger/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Sodium Chloride/metabolism , Superior Cervical Ganglion/metabolism , Symporters/genetics , Symporters/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
12.
Pharmacology ; 66(1): 26-30, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12169762

ABSTRACT

The role of angiotensin II (AII) and angiotensin IV (AIV) as inducers of PAI-1 expression during hypertension was studied in vivo. A 2-week infusion of AII (300 ng/kg/min) via an osmotic pump increased systolic blood pressure (171 +/- 2 vs. 138 +/- 6 mm Hg), urinary protein excretion (32 +/- 6 vs. 14 +/- 2 mg/day), and renal (2.2 +/- 0.5 vs. 1.0 +/- 0.1) and cardiac (1.8 +/- 0.3 vs. 1.0 +/- 0.1) gene expression of plasminogen activator inhibitor 1 (PAI-1). AIV infusion did not affect any of the above with the exception of PAI-1 gene expression which was increased in the left ventricles (1.7 +/- 0.3 vs. 1.0 +/- 0.1). AII-infused rats displayed a decreased creatinine clearance (538 +/- 75 vs. 898 +/- 96 ml/min) and hypertrophic left ventricles (0.275 +/- 0.006 vs. 0.220 +/- 0.011 g/100 g). Our results demonstrate that AII but not AIV infusion is associated with increased renal PAI-1 gene expression.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Myocardium/metabolism , Plasminogen Activator Inhibitor 1/biosynthesis , Angiotensin II/metabolism , Animals , Kidney/metabolism , Kidney/physiology , Kidney Function Tests , Male , Plasminogen Activator Inhibitor 1/genetics , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Stimulation, Chemical
13.
J Pharmacol Exp Ther ; 301(1): 21-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11907153

ABSTRACT

The effects of the angiotensin type 1 (AT(1)) receptor antagonist, eprosartan, were studied in a model of severe, chronic hypertension. Treatment of male spontaneously hypertensive stroke prone rats (SHR-SP) fed a high-fat, high-salt diet with eprosartan (60 mg/kg/day i.p.) for 12 weeks resulted in a lowering of blood pressure (250 +/- 9 versus 284 +/- 8 mm Hg), renal expression of transforming growth factor-beta mRNA (1.5 +/- 0.2 versus 5.4 +/- 1.4) and the matrix components: plasminogen activator inhibitor-1 (5.2 +/- 1.4 versus 31.4 +/- 10.7), fibronectin (2.2 +/- 0.6 versus 8.2 +/- 2.2), collagen I-alpha 1 (5.6 +/- 2.0 versus 23.8 +/- 7.3), and collagen III (2.7 +/- 0.9 versus 7.6 +/- 2.1). Data were corrected for rpL32 mRNA expression and expressed relative to Wistar Kyoto (WKY) rats [=1.0]. Expression of fibronectin protein was also lowered by eprosartan (0.8 +/- 0.1 versus 1.9 +/- 0.5), relative to WKY rats. Eprosartan provided significant renoprotection to SHR-SP rats as measured by decreased proteinuria (22 +/- 2 versus 127 +/- 13 mg/day) and histological evidence of active renal damage (5 +/- 2 versus 195 +/- 6) and renal fibrosis (5.9 +/- 0.7 versus 16.4 +/- 1.9) in vehicle- versus eprosartan-treated rats, respectively. Our results demonstrated that AT(1) receptor blockade with eprosartan can reduce blood pressure and preserve renal structure and function in this model of severe, chronic hypertension. These effects were accompanied by a decreased renal expression of transforming growth factor-beta1, plasminogen activator inhibitor-1, and several other extracellular matrix proteins compared with vehicle-treated SHR-SP.


Subject(s)
Acrylates/therapeutic use , Angiotensin Receptor Antagonists , Hypertension/pathology , Imidazoles/therapeutic use , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Stroke/pathology , Thiophenes , Animals , Blood Pressure/drug effects , Blotting, Western , Body Weight/physiology , Dietary Fats , Disease Progression , Extracellular Matrix/pathology , Fibrinolysin/physiology , Gene Expression Regulation/drug effects , Heart Rate/drug effects , Hypertension/complications , Hypertension/genetics , Kidney Diseases/etiology , Male , Organ Size/physiology , Plasminogen Activator Inhibitor 1/pharmacology , Rats , Rats, Inbred SHR , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin/genetics , Serine Proteinase Inhibitors/pharmacology , Sodium Chloride, Dietary , Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL