Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129310

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

2.
Int Immunopharmacol ; 137: 112504, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897127

ABSTRACT

Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.


Subject(s)
Anti-Inflammatory Agents , Diabetic Retinopathy , Flavonoids , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Molecular Docking Simulation , Piperidines , Flavonoids/therapeutic use , Flavonoids/pharmacology , Animals , Humans , Piperidines/pharmacology , Piperidines/therapeutic use , Diabetic Retinopathy/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use
3.
EJNMMI Phys ; 11(1): 48, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839641

ABSTRACT

PURPOSE: The purpose of our study is to validate the robustness and accuracy of consensus contour in 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG) PET radiomic features. METHODS: 225 nasopharyngeal carcinoma (NPC) and 13 extended cardio-torso (XCAT) simulated data were enrolled. All segmentation were performed with four segmentation methods under two different initial masks, respectively. Consensus contour (ConSeg) was then developed using the majority vote rule. 107 radiomic features were extracted by Pyradiomics based on segmentation and the intraclass correlation coefficient (ICC) was calculated for each feature between masks or among segmentation, respectively. In XCAT ICC between segmentation and simulated ground truth were also calculated to access the accuracy. RESULTS: ICC varied with the dataset, segmentation method, initial mask and feature type. ConSeg presented higher ICC for radiomic features in robustness tests and similar ICC in accuracy tests, compared with the average of four segmentation results. Higher ICC were also generally observed in irregular initial masks compared with rectangular masks in both robustness and accuracy tests. Furthermore, 19 features (17.76%) had ICC ≥ 0.75 in both robustness and accuracy tests for any of the segmentation methods or initial masks. The dataset was observed to have a large impact on the correlation relationships between radiomic features, but not the segmentation method or initial mask. CONCLUSIONS: The consensus contour combined with irregular initial mask could improve the robustness and accuracy in radiomic analysis to some extent. The correlation relationships between radiomic features and feature clusters largely depended on the dataset, but not segmentation method or initial mask.

4.
Sci Rep ; 14(1): 11185, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755275

ABSTRACT

The brain presents age-related structural and functional changes in the human life, with different extends between subjects and groups. Brain age prediction can be used to evaluate the development and aging of human brain, as well as providing valuable information for neurodevelopment and disease diagnosis. Many contributions have been made for this purpose, resorting to different machine learning methods. To solve this task and reduce memory resource consumption, we develop a mini architecture of only 10 layers by modifying the deep residual neural network (ResNet), named ResNet mini architecture. To support the ResNet mini architecture in brain age prediction, the brain age dataset (OpenNeuro #ds000228) that consists of 155 study participants (three classes) and the Alzheimer MRI preprocessed dataset that consists of 6400 images (four classes) are employed. We compared the performance of the ResNet mini architecture with other popular networks using the two considered datasets. Experimental results show that the proposed architecture exhibits generality and robustness with high accuracy and less parameter number.


Subject(s)
Aging , Brain , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain/diagnostic imaging , Brain/physiology , Aging/physiology , Magnetic Resonance Imaging/methods , Deep Learning , Aged , Alzheimer Disease/diagnostic imaging , Machine Learning , Female , Aged, 80 and over , Male , Middle Aged
5.
Inflammation ; 47(4): 1520-1535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38436811

ABSTRACT

Diabetic retinopathy (DR) is a diabetes-associated complication that poses a threat to vision, distinguished by persistent and mild inflammation of the retinal microvasculature. The activation of microglia plays a crucial role in driving this pathological progression. Previous investigations have demonstrated that ubiquitin-specific peptidase 25 (USP25), a deubiquitinating enzyme, is involved in the regulation of immune cell activity. Nevertheless, the precise mechanisms through which USP25 contributes to the development of DR remain incompletely elucidated. Firstly, we have demonstrated the potential mechanism by which ROCKs can facilitate microglial activation and augment the synthesis of inflammatory mediators through the modulation of NF-κB signaling pathways in a high-glucose milieu. Furthermore, our study has provided novel insights by demonstrating that the regulatory role of USP25 in the secretion of proinflammatory factors is mediated through the involvement of ROCK in modulating the expression of NF-κB and facilitating the nuclear translocation of the phosphatase NF-κB. This regulatory mechanism plays a crucial role in modulating the activation of microglial cells within a high-glycemic environment. Hence, USP25 emerges as a pivotal determinant for the inflammatory activation of microglial cells, and its inhibition exhibits a dual effect of promoting retinal neuron survival while suppressing the inflammatory response in the retina. In conclusion, the promotion of diabetic retinopathy (DR) progression by USP25 is attributed to its facilitation of microglial activation induced by high glucose levels, a process mediated by the ROCK pathway. These findings highlight the importance of considering USP25 as a potential therapeutic target for the management of diabetic neuroinflammation.


Subject(s)
Diabetic Retinopathy , Microglia , Neuroinflammatory Diseases , Ubiquitin Thiolesterase , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Animals , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Microglia/metabolism , Ubiquitin Thiolesterase/metabolism , NF-kappa B/metabolism , Signal Transduction , Humans , Mice , rho-Associated Kinases/metabolism , Inflammation/metabolism
6.
ACS Chem Neurosci ; 14(24): 4344-4351, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38061891

ABSTRACT

Positron emission tomography (PET) probes are specific and sensitive while suffering from radiation risk. It is worthwhile to explore the chemical emission saturation transfer (CEST) effects of the probe prototypes and repurpose them for CEST imaging to avoid radiation. In this study, we used 11C-PiB as an example of a PET probe for detecting amyloid and tested the feasibility of repurposing this PET probe prototype, PiB, for CEST imaging. After optimizing the parameters through preliminary phantom experiments, we used APP/PS1 transgenic mice and age-matched C57 mice for in vivo CEST magnetic resonance imaging (MRI) of amyloid. Furthermore, the pathological assessment was conducted on the same brain slices to evaluate the correlation between the CEST MRI signal abnormality and ß-amyloid deposition detected by immunohistochemical staining. In our results, the Z-spectra revealed an apparent CEST effect that peaked at approximately 6 ppm. APP/PS1 mice as young as 9 months injected with PiB showed a significantly higher CEST effect compared to the control groups. The hyperintense region was correlated with the Aß deposition shown by pathological staining. In conclusion, repurposing the PET probe prototype for CEST MRI imaging is feasible and enables label- and radiation-free detection of the amyloid while maintaining the sensitivity and specificity of the ligand. This study opens the door to developing CEST probes based on PET probe prototypes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/chemistry , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Thiazoles , Positron-Emission Tomography/methods , Amyloid , Mice, Transgenic , Magnetic Resonance Imaging , Amyloidogenic Proteins , Aniline Compounds , Molecular Imaging
7.
Aging (Albany NY) ; 15(24): 14945-14956, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38149988

ABSTRACT

Glymphatic clearance dysfunction may play an important role in a variety of neurodegenerative diseases and the progression of ageing. However, in vivo imaging of the glymphatic system is challenging. In this study, we describe an MRI method based on chemical exchange saturation transfer (CEST) of the Angiopep-2 probe to visualize the clearance function of the glymphatic system. We injected rats with Angiopep-2 via the tail vein and performed in vivo MRI at 7 T to track differences in Angiopep-2 signal changes; we then applied the same principles in a bilateral deep cervical lymph node ligation rat model and in ageing rats. We demonstrated the feasibility of Angiopep-2 CEST for visualizing the clearance function of the glymphatic system. Finally, a pathological assessment was performed. Within the model group, the deep cervical lymph node ligation group and the ageing group showed higher CEST signal than the control group. We conclude that this new MRI method can visualize clearance in the glymphatic system.


Subject(s)
Glymphatic System , Lymphatic Vessels , Rats , Animals , Glymphatic System/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging/methods , Lymphatic Vessels/metabolism , Lymph Nodes
8.
ACS Chem Neurosci ; 14(11): 2172-2182, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37216423

ABSTRACT

Sepsis-associated encephalopathy is a severe systemic infection complication. Although early stages involve pathophysiological changes, detection using conventional imaging is challenging. Glutamate chemical exchange saturation transfer and diffusion kurtosis imaging can noninvasively investigate cellular and molecular events in early disease stages using magnetic resonance imaging (MRI). N-Acetylcysteine, an antioxidant and precursor of glutathione, regulates neurotransmitter glutamate metabolism and participates in neuroinflammation. We investigated the protective role of n-acetylcysteine in sepsis-associated encephalopathy using a rat model and monitored changes in brain using magnetic resonance (MR) molecular imaging. Bacterial lipopolysaccharide was injected intraperitoneally to induce a sepsis-associated encephalopathy model. Behavioral performance was assessed using the open-field test. Tumor necrosis factor α and glutathione levels were detected biochemically. Imaging was performed using a 7.0-T MRI scanner. Protein expression, cellular damage, and changes in blood-brain barrier permeability were assessed using western blotting, pathological staining, and Evans blue staining, respectively. Lipopolysaccharide-induced rats showed reduced anxiety and depression after treatment with n-acetylcysteine. MR molecular imaging can identify pathological processes at different disease stages. Furthermore, rats treated with n-acetylcysteine showed increased glutathione levels and decreased tumor necrosis factor α, suggesting enhanced antioxidant capacity and inhibition of inflammatory processes, respectively. Western blot analysis showed reduced expression of nuclear factor kappa B (p50) protein after treatment, suggesting that n-acetylcysteine inhibits inflammation via this signaling pathway. Finally, n-acetylcysteine-treated rats showed reduced cellular damage by pathology and reduced extravasation of their blood-brain barrier by Evans Blue staining. Thus, n-acetylcysteine might be a therapeutic option for sepsis-associated encephalopathy and other neuroinflammatory diseases. Furthermore, noninvasive "dynamic visual monitoring" of physiological and pathological changes related to sepsis-associated encephalopathy was achieved using MR molecular imaging for the first time, providing a more sensitive imaging basis for early diagnosis, identification, and prognosis.


Subject(s)
Sepsis-Associated Encephalopathy , Rats , Animals , Sepsis-Associated Encephalopathy/diagnostic imaging , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Acetylcysteine/pharmacology , Antioxidants , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Evans Blue , Glutathione
9.
ACS Chem Neurosci ; 14(2): 226-234, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36599050

ABSTRACT

The reliable and dynamic detection of amyloid ß-protein (Aß) deposition using imaging technology is necessary for preclinical Alzheimer's disease (AD), which may significantly improve prognosis. The present study aimed to evaluate the feasibility of applying angiopep-2 (ANG), a chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) biomarker, for monitoring Aß deposition in vivo. ANG exerted a good chemical exchange saturation transfer (CEST) effect and displayed a moderate binding affinity to Aß1-42 in vitro. Six-month-old mice with AD injected with ANG exhibited a significantly enhanced CEST effect than controls in vivo; this effect gradually became more apparent at 8, 10, and 12 months. Spatial learning impairment caused by abundant Aß deposition (representing mild cognitive impairment in AD patients) develops at 12 months in APPswe/PSEN1dE9 (line 85) AD mice. To conclude, the CEST of ANG could display very earlier age-related Aß pathological progress in mice with AD, consistent with immunohistochemistry. ANG has extraordinary potential for clinical transformation as an imaging biomarker to diagnose early AD and track its progress dynamically and nonradiationally.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , Biomarkers/metabolism , Mice, Transgenic , Brain/metabolism
10.
Cereb Cortex ; 33(9): 5501-5506, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36635220

ABSTRACT

Vascular mild cognitive impairment (VMCI) is an early and reversible stage of dementia. Volume differences in regional gray matter may reveal the development and prognosis of VMCI. This study selected 2 of the most common types of VMCI, namely, periventricular white matter hyperintensities (PWMH, n = 14) and strategic single infarctions (SSI, n = 10), and used the voxel-based morphometry method to quantify their morphological characteristics. Meanwhile, age- and sex-matched healthy volunteers were included (n = 16). All the participants were neuropsychologically tested to characterize their cognitive function and underwent whole-brain magnetic resonance imaging scanning. Our results showed that the volumes of the bilateral temporal lobes and bilateral frontal gray matter were obviously diminished in the PWMH group. The atrophy volume difference was 4,086 voxels in the left temporal lobe, 4,154 voxels in the right temporal lobe, 1,718 voxels in the left frontal lobe, and 1,141 voxels in the right frontal lobe (P ≤ 0.001). Moreover, the characteristics of the gray matter atrophy associated with the PWMH were more similar to those associated with Alzheimer's disease than SSI, which further revealed the susceptibility for escalation from PWMH to dementia. In conclusion, PWMH patients and SSI patients have different morphological characteristics, which explain the different prognoses of VMCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Neuropsychological Tests , Cognitive Dysfunction/pathology , Brain , Gray Matter/pathology , Alzheimer Disease/pathology , Magnetic Resonance Imaging , Atrophy/pathology , Early Diagnosis
11.
Cereb Cortex ; 33(3): 754-763, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35301516

ABSTRACT

This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Deep Learning , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology
12.
Front Neurosci ; 17: 1306364, 2023.
Article in English | MEDLINE | ID: mdl-38274503

ABSTRACT

Introduction: We aim to explore the microstructural and metabolic changes in visual pathways in patients with thyroid eye disease (TED) using 3T multi-parametric MRI. Methods: Thirty-four TED patients (inactive group = 20; active group = 14; acute group = 18; chronic group = 16) and 12 healthy controls (HC) were recruited from November 2020 to July 2021. Proton magnetic resonance spectroscopy (1H-MRS), glutamate chemical exchange saturation transfer (GluCEST) and diffusion kurtosis imaging (DKI) were performed on 3.0T MR scanner. Data analysis and group comparisons were performed after MR data processing. Results: As compare to HC group, the levels of total choline (tCh) in optic radiation (OR) in active group ([1.404 ± 0.560] vs. [1.022 ± 0.260]; p < 0.05), together with tCh ([1.415 ± 0.507] vs. [1.022 ± 0.260]; p < 0.05) in OR in acute group were significantly increased. Glutamine (Gln) levels were higher in OR in the chronic group than those in HCs and were positively correlated with the levels of thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), free triiodothyronine (FT3) and FT4 in chronic group. Glutamate (Glu) levels by 1H-MRS did not show significant differences between any two groups. Interestingly, MTRasym (3.0 ppm) was higher in OL in inactive group, active group, acute group and chronic group than those in HCs, and was positively correlated with Glu levels in OL in 1H-MRS. Fractional anisotropy (FA) values from DKI in OR in acute group were significantly lower than those in HCs. Discussion: Our initial study demonstrate that GluCEST performs better than 1H-MRS to monitor Glu alterations in visual pathway in TED patients. Changes of brain glutamine levels in TED patients are closely related to their associated hormones alterations, indicating that disease injury status could be reflected through non-invasive metabolites detection by brain 1H-MRS. FA is the most sensitive DKI index to reveal the visual pathway impairment in TED patients. Altogether, our study revealed that 3T multiparametric MR techniques are useful to demonstrate metabolic and microstructural alterations in visual pathways in TED patients. We found that damage to visual pathways occurs in mild TED cases, which not only offers a new approach to the diagnosis of dysthyroid optic neuropathy, but also demonstrates neuropathy in TED is a gradual and continuous spatio-emporal progression.

13.
ACS Chem Neurosci ; 13(24): 3597-3607, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36469930

ABSTRACT

Sleep deprivation leads to hippocampal injury. Proteostasis disturbance is an important mechanism linking sleep deprivation and hippocampal injury. However, identifying noninvasive imaging biomarkers for hippocampal proteostasis disturbance remains challenging. Amide proton transfer-weighted (APTw) imaging is a chemical exchange saturation transfer technique based on the amide protons in proteins and peptides. We aimed to explore the ability of APTw imaging in detecting sleep deprivation-induced hippocampal proteostasis disturbance and its biological significance, as well as its biological basis. In vitro, the feasibility of APTw imaging in detecting changes of the protein state was evaluated, demonstrating that APTw imaging can detect alterations in the protein concentration, conformation, and aggregation state. In vivo, the hippocampal APTw signal declined with increased sleep deprivation time and was significantly lower in sleep-deprived rats than that in normal rats. This signal was positively correlated with the number of surviving neurons counted in Nissl staining and negatively correlated with the expression of glucose-regulated protein 78 evaluated in immunohistochemistry. Differentially expressed proteins in proteostasis network pathways were identified in the hippocampi of normal rats and sleep-deprived rats via mass spectrometry proteomics analysis, providing the biological basis for the change of the hippocampal APTw signal in sleep-deprived rats. These findings demonstrate that APTw imaging can detect hippocampal proteostasis disturbance induced by sleep deprivation and reflect the extent of neuronal injury and endoplasmic reticulum stress.


Subject(s)
Protons , Sleep Deprivation , Rats , Animals , Sleep Deprivation/diagnostic imaging , Amides/chemistry , Proteostasis , Magnetic Resonance Imaging/methods , Proteins , Hippocampus/diagnostic imaging
14.
Magn Reson Imaging ; 94: 105-111, 2022 12.
Article in English | MEDLINE | ID: mdl-36174873

ABSTRACT

BACKGROUND AND OBJECTIVES: Intracranial atherosclerotic stenosis of a major intracranial artery is the common cause of ischemic stroke. We evaluate the feasibility of using deep learning to automatically detect intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography. METHODS: In a retrospective study, magnetic resonance images with radiological reports of intracranial arterial stenosis and occlusion were extracted. The images were randomly divided into a training set and a test set. The manual annotation of lesions with a bounding box labeled "moderate stenosis," "severe stenosis," "occlusion," and "absence of signal" was considered as ground truth. A deep learning algorithm based on you only look once version 5 (YOLOv5) detection model was developed with the training set, and its sensitivity and positive predictive values to detect lesions were evaluated in the test set. RESULTS: A dataset of 200 examinations consisted of a total of 411 lesions-242 moderate stenoses, 84 severe stenoses, 70 occlusions, and 15 absence of signal. The magnetic resonance images contained 291 lesions in the training set and 120 lesions in the test set. The sensitivity and positive predictive values were 64.2 and 83.7%, respectively. The detection sensitivity in relation to the location was greatest in the internal carotid artery (86.2%). CONCLUSIONS: Applying deep learning algorithms in the automated detection of intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography is feasible and has great potential.


Subject(s)
Carotid Stenosis , Deep Learning , Humans , Carotid Artery, Internal/diagnostic imaging , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/pathology , Constriction, Pathologic/diagnostic imaging , Constriction, Pathologic/pathology , Magnetic Resonance Angiography/methods , Retrospective Studies
15.
ACS Chem Neurosci ; 13(18): 2699-2708, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36047877

ABSTRACT

Purpose: This study aimed to detect changes in iron deposition and neural microstructure in the substantia nigra (SN), red nucleus (RN), and basal ganglia of Parkinson's disease (PD) patients at different stages using quantitative susceptibility mapping and diffusion kurtosis imaging to identify potential indicators of early-stage PD. Methods: We enrolled 20 early-stage and 15 late-stage PD patients, as well as 20 age- and sex-matched controls. All participants underwent quantitative susceptibility mapping and diffusion kurtosis imaging to determine magnetic susceptibility (MS), fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) in several brain regions. Results: Compared with the control group, MS and MK values in the SN were significantly increased in the early- and late-stage PD group, whereas MS values in the red nucleus (RN), globus pallidus (GP), and caudate nucleus (CN), FA value in the CN and GP, and MK value in the CN and putamen (PU) were significantly increased in the late-stage PD group. There were positive correlations between MS and MK values in the CN and MS and FA values in the GP. Furthermore, the combination of MS and MK values in the SN provided high accuracy for distinguishing early-stage PD patients from controls. Conclusions: This study identified MS and MK in the SN as potential indicators of early-stage PD.


Subject(s)
Parkinson Disease , Biomarkers , Diffusion Tensor Imaging/methods , Humans , Iron , Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Substantia Nigra/diagnostic imaging
16.
Front Aging Neurosci ; 14: 792778, 2022.
Article in English | MEDLINE | ID: mdl-35370619

ABSTRACT

Objectives: Brain iron deposition and microstructural changes in brain tissue are associated with Parkinson's disease (PD). However, the correlation between these factors in Parkinson's disease has been little studied. This study aimed to use quantitative susceptibility mapping combined with diffusion kurtosis imaging to investigate the effects of iron deposition on microstructural tissue alterations in the brain. Methods: Quantitative susceptibility mapping and diffusion kurtosis imaging were performed on 24 patients with early PD, 13 patients with advanced PD, and 25 healthy controls. The mean values of magnetic susceptibility and diffusion kurtosis were calculated for the bilateral substantia nigra, red nucleus, putamen, globus pallidus, and caudate nucleus, and compared between the groups. Correlation analyses between the diffusion kurtosis of each nucleus and its magnetic susceptibility parameters in PD patients and healthy controls were performed. Results: The study found a significant increase in iron deposition in the substantia nigra, red nucleus, putamen and globus pallidus, bilaterally, in patients with PD. Mean kurtosis values were increased in the substantia nigra but decreased in the globus pallidus; axial kurtosis values were decreased in both the substantia nigra and red nucleus; radial kurtosis values were increased in the substantia nigra but showed an opposite trend in the globus pallidus and caudate nucleus. In the substantia nigra of patients with PD, magnetic susceptibility was positively correlated with mean and radial kurtosis values, and negatively correlated with axial kurtosis. None of these correlations were significantly different in the control group. In the putamen, magnetic susceptibility was positively correlated with mean, axial, and radial kurtosis only in patients with advanced-stage PD. Conclusion: Our study provides new evidence for brain iron content and microstructural alterations in patients with PD. Iron deposition may be a common mechanism for microstructural alterations in the substantia nigra and putamen of patients with PD. Tracking the dynamic changes in iron content and microstructure throughout the course of PD will help us to better understand the dynamics of iron metabolism and microstructural alterations in the pathogenesis of PD and to develop new approaches to monitor and treat PD.

17.
Front Med (Lausanne) ; 9: 797087, 2022.
Article in English | MEDLINE | ID: mdl-35391880

ABSTRACT

Purpose: To investigate the intravitreal injection of conbercept as a treatment strategy for proliferative diabetic retinopathy (PDR) with or without center-involved diabetic macular edema (CI-DME) and evaluate its effect on the microvascular changes in the eyes. Methods: In this prospective study, 43 patients including 29 cases (56 eyes) in CI-DME with PDR patients, and 14 cases (26 eyes) in the non-center involving diabetic macular edema (NCI-DME) with PDR patients were involved in this study. The best corrected visual acuity (BCVA), central retinal thickness (CRT), foveolar avascular zone (FAZ), and macular capillary vessel density (VD) of the superficial retinal capillary plexus (SCP) and deep retinal capillary plexus (DCP) were assessed before and after conbercept treatments for 1, 3, or 6 months. Results: The BCVA was significantly increased after conbercept treatment in the eyes of CI-DME patients. After 6 months of treatment with the conbercept, microvascular density of the inferior area in SCP and the central fovea area in DCP increased significantly, regardless of the central fovea involvement. The effect of the conbercept treatment on the VD of NCI-DME was higher than that of CI-DME. Then, after 6 months of treatment, the CRT of patients with CI-DME and NCI-DME were decreased significantly. Conclusions: In this study, an intravitreal injection of conbercept significantly improved vision, alleviated macular edema in patients with DME. Conbercept treatment also altered the microvascular density in the retina.

18.
IEEE J Biomed Health Inform ; 26(7): 3495-3506, 2022 07.
Article in English | MEDLINE | ID: mdl-35380977

ABSTRACT

Early diagnosis is currently the most effective way of saving the life of patients with neuropsychiatric systemic lupus erythematosus (NPSLE). However, it is rather difficult to detect this terrible disease at the early stage, due to the subtle and elusive symptomatic signals. Recent studies show that the 1H-MRS (proton magnetic resonance spectroscopy) imaging technique can capture more information reflecting the early appearance of this disease than conventional magnetic resonance imaging techniques. 1H-MRS data, however, also presents more noises that can bring serious diagnosis bias. We hence proposed a noise-immune extreme ensemble learning technique for effectively leveraging 1H-MRS data for advancing the early diagnosis of NPSLE. Our main results are that 1) by developing generalized maximum correntropy criterion in the kernel extreme learning setting, many types of non-Gaussian noises can be distinguished, and 2) weighted recursive feature elimination, using maximal information coefficient to weight feature's importance, helps to further alleviate the bad impact of noises on the diagnosis performance. The proposed method is assessed on a publicly available dataset with 97.5% accuracy, 95.8% sensitivity and 99.9% specificity, which well demonstrates its efficacy.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Early Diagnosis , Humans , Lupus Erythematosus, Systemic/diagnostic imaging , Lupus Vasculitis, Central Nervous System/diagnostic imaging , Machine Learning , Magnetic Resonance Imaging/methods
19.
Front Neurol ; 13: 594711, 2022.
Article in English | MEDLINE | ID: mdl-35295827

ABSTRACT

Background: The current diagnosis of Parkinson's disease (PD) is mainly based on the typical clinical manifestations. However, 60% dopaminergic neurons have died when the typical clinical manifestations occur. Predictive neurobiomarkers may help identify those PD patients having non-motor disorders or in different stage and achieving the aim of early diagnosis. Up to date, few if any neuroimaging techniques have been described useful for non-movement disorders diagnosis in PD patients. Here, we investigated the alteration of metabolites in PD patients in different stage of PD and non-motor symptoms including sleep, gastrointestinal and cognitive dysfunction, by using the 1H-MRS. Methods: A total of 48 subjects were included between 2017 and 2019: 37 PD (15 men, age 47-82 years) and 11 healthy people (8 men, age 49-74 years). All participants underwent MRI and multi-voxel 1H-MRS examination within 3 days in admission. Six kinds of metabolites, such as creatine (Cr), N-acetyl aspartate/creatine (NAA/Cr), N-acetyl aspartate/choline (NAA/Cho), choline/creatine (Cho/Cr), lipid/creatine (LL/Cr), and myo-Inositol/creatine ratio (mI/Cr) were tested among the PD group and the control groups. Statistical analyses and correlation analyses were performed by using SPSS. The p < 0.05 was considered statistically significant. Results: Compared late PD group with a control group or early group, higher Cr ratio and lower NAA/Cr ratio were observed in the late PD group (p < 0.05). The mI/Cr in the late PD group was also lower than that in the early PD group (p < 0.05). Regarding the relationship between metabolites and NMS, Cho/Cr was higher in the sleep disorder group, whereas mI/Cr was lower in the gastrointestinal dysfunction group in comparison with the non-symptom groups. Moreover, Cr, Cho/Cr, mI/Cr, and LL/Cr were identified to have higher concentrations in the cognitive group in thalamus. Conclusions: Proton magnetic resonance spectroscopy is an advanced tool to quantify the metabolic changes in PD. Three biomarkers (Cr, NAA/Cr, and mI/Cr) were detected in the late stage of PD, suggesting that these markers might be potential to imply the progression of PD. In addition, subgroups analysis showed that MRS of thalamus is a sensitive region for the detection of cognitive decline in PD, and the alteration of neurochemicals (involving Cr, Cho, mI, and LL) may be promising biomarkers to predict cognitive decline in PD.

20.
Front Med (Lausanne) ; 9: 796667, 2022.
Article in English | MEDLINE | ID: mdl-35223899

ABSTRACT

PURPOSE: To observe and analyze the clinical and multi-mode imaging features of eyes with PHOMS, and to introduce two cases of PHOMS which underwent multi-mode imaging. METHODS: Retrospective clinical observational study. A total of 26 patients (37 eyes) with hyperreflective structures surrounded by hyporeflective edges around the optic discs who were examined and diagnosed at Shandong Eye Hospital between January 2019 and June 2021 were included in the study. Among these patients, 12 were male and 14 were female. Fifteen were monocular. The average age was 39 years. All patients underwent the following examinations: Best-corrected visual acuity (BCVA), intraocular pressure examinations, slit-lamp anterior segment examinations, indirect ophthalmoscopy, visual field examinations, fundus color photography, fundus autofluorescence (FAF), optical coherence tomography (OCT), and optical coherence tomography angiography (OCTA). Some of the patients were examined with fundus fluorescein angiography (FFA). Clinical data and imaging characteristics from the OCT, OCTA, and FFA were analyzed retrospectively. RESULTS: We found the hyperreflective structures surrounded by hyporeflective edges around the optic discs in 37 eyes. EDI-OCT results revealed hyperreflective structures surrounded by hyporeflective edges around the optic discs in all eyes. Typical hyperreflexia lesions occurred around the optic disc, located subretinally and above Bruch's membrane. OCTA revealed that the highly reflective perioptic material also had vascular structures. CONCLUSION: EDI-OCT of PHOMS showed hyperreflective structures surrounded by hyporeflective edges around all of the optic discs. Infra-red photography showed temporal hyperreflexia. These characteristics can be seen in a variety of diseases and may be a relatively common feature revealed by EDI-OCT scanning. These characteristics may also be seen in elderly patients as well as children. PHOMS may be found in optic disc drusen (ODD), tilted disc syndrome (TDS), optic neuritis, ischemic optic neuropathy, and in white dot syndromes. Few patients may be developed into macular neovascularization (MNV). In order to improve the accuracy and robustness of the conclusions and provide better clinical guidance, we need to conduct more comprehensive research in the subsequent clinical work.

SELECTION OF CITATIONS
SEARCH DETAIL