Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924431

ABSTRACT

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Atomoxetine Hydrochloride , Proteomics , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Proteomics/methods , Apolipoprotein E4/genetics , Atomoxetine Hydrochloride/therapeutic use , Atomoxetine Hydrochloride/pharmacology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Male , Aged , Female , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism
2.
JAMA Netw Open ; 7(5): e2412824, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776079

ABSTRACT

Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.


Subject(s)
Blood Pressure , Cerebral Small Vessel Diseases , Dementia , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/epidemiology , Female , Male , Aged , Dementia/genetics , Dementia/epidemiology , Blood Pressure/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Stroke/genetics , Stroke/epidemiology , Risk Factors , Genetic Predisposition to Disease , Aged, 80 and over , Prospective Studies
3.
Osteoporos Int ; 35(7): 1231-1241, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38658459

ABSTRACT

There is imminent refracture risk in elderly individuals for up to six years, with a decline thereafter except in women below 75 who face a constant elevated risk. Elderly men with fractures face the highest mortality risk, particularly those with hip and vertebral fractures. Targeted monitoring and treatment strategies are recommended. PURPOSE: Current management and interventions for osteoporotic fractures typically focus on bone mineral density loss, resulting in suboptimal evaluation of fracture risk. The aim of the study is to understand the progression of fractures to refractures and mortality in the elderly using multi-state models to better target those at risk. METHODS: This prospective, observational study analysed data from the AGES-Reykjavik cohort of Icelandic elderly, using multi-state models to analyse the evolution of fractures into refractures and mortality, and to estimate the probability of future events in subjects based on prognostic factors. RESULTS: At baseline, 4778 older individuals aged 65 years and older were included. Elderly men, and elderly women above 80 years of age, had a distinct imminent refracture risk that lasted between 2-6 years, followed by a sharp decline. However, elderly women below 75 continued to maintain a nearly constant refracture risk profile for ten years. Hip (30-63%) and vertebral (24-55%) fractures carried the highest 5-year mortality burden for elderly men and women, regardless of age, and for elderly men over 80, lower leg fractures also posed a significant mortality risk. CONCLUSION: The risk of refracture significantly increases in the first six years following the initial fracture. Elderly women, who experience fractures at a younger age, should be closely monitored to address their long-term elevated refracture risk. Elderly men, especially those with hip and vertebral fractures, face substantial mortality risk and require prioritized monitoring and treatment.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Recurrence , Spinal Fractures , Humans , Osteoporotic Fractures/mortality , Aged , Male , Female , Iceland/epidemiology , Aged, 80 and over , Hip Fractures/mortality , Spinal Fractures/mortality , Prospective Studies , Risk Assessment/methods , Disease Progression , Bone Density/physiology , Prognosis
4.
Aging Cell ; 23(6): e14136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440820

ABSTRACT

The identification of protein targets that exhibit anti-aging clinical potential could inform interventions to lengthen the human health span. Most previous proteomics research has been focused on chronological age instead of longevity. We leveraged two large population-based prospective cohorts with long follow-ups to evaluate the proteomic signature of longevity defined by survival to 90 years of age. Plasma proteomics was measured using a SOMAscan assay in 3067 participants from the Cardiovascular Health Study (discovery cohort) and 4690 participants from the Age Gene/Environment Susceptibility-Reykjavik Study (replication cohort). Logistic regression identified 211 significant proteins in the CHS cohort using a Bonferroni-adjusted threshold, of which 168 were available in the replication cohort and 105 were replicated (corrected p value <0.05). The most significant proteins were GDF-15 and N-terminal pro-BNP in both cohorts. A parsimonious protein-based prediction model was built using 33 proteins selected by LASSO with 10-fold cross-validation and validated using 27 available proteins in the validation cohort. This protein model outperformed a basic model using traditional factors (demographics, height, weight, and smoking) by improving the AUC from 0.658 to 0.748 in the discovery cohort and from 0.755 to 0.802 in the validation cohort. We also found that the associations of 169 out of 211 proteins were partially mediated by physical and/or cognitive function. These findings could contribute to the identification of biomarkers and pathways of aging and potential therapeutic targets to delay aging and age-related diseases.


Subject(s)
Longevity , Proteomics , Humans , Longevity/physiology , Proteomics/methods , Female , Male , Aged , Aged, 80 and over , Middle Aged , Cohort Studies , Biomarkers/blood , Aging/blood
5.
Neurology ; 102(7): e209176, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38471053

ABSTRACT

BACKGROUND AND OBJECTIVES: Individual brain MRI markers only show at best a modest association with long-term occurrence of dementia. Therefore, it is challenging to accurately identify individuals at increased risk for dementia. We aimed to identify different brain MRI phenotypes by hierarchical clustering analysis based on combined neurovascular and neurodegenerative brain MRI markers and to determine the long-term dementia risk within the brain MRI phenotype subgroups. METHODS: Hierarchical clustering analysis based on 32 combined neurovascular and neurodegenerative brain MRI markers in community-dwelling individuals of the Age-Gene/Environment Susceptibility Reykjavik Study was applied to identify brain MRI phenotypes. A Cox proportional hazards regression model was used to determine the long-term risk for dementia per subgroup. RESULTS: We included 3,056 participants and identified 15 subgroups with distinct brain MRI phenotypes. The phenotypes ranged from limited burden, mostly irregular white matter hyperintensity (WMH) shape and cerebral atrophy, mostly irregularly WMHs and microbleeds, mostly cortical infarcts and atrophy, mostly irregularly shaped WMH and cerebral atrophy to multiburden subgroups. Each subgroup showed different long-term risks for dementia (min-max range hazard ratios [HRs] 1.01-6.18; mean time to follow-up 9.9 ± 2.6 years); especially the brain MRI phenotype with mainly WMHs and atrophy showed a large increased risk (HR 6.18, 95% CI 3.37-11.32). DISCUSSION: Distinct brain MRI phenotypes can be identified in community-dwelling older adults. Our results indicate that distinct brain MRI phenotypes are related to varying long-term risks of developing dementia. Brain MRI phenotypes may in the future assist in an improved understanding of the structural correlates of dementia predisposition.


Subject(s)
Dementia , White Matter , Humans , Aged , Brain/pathology , Independent Living , Magnetic Resonance Imaging , Dementia/epidemiology , Phenotype , Atrophy/pathology , White Matter/pathology
6.
medRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38313266

ABSTRACT

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

8.
Eur J Epidemiol ; 39(2): 161-169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180594

ABSTRACT

The mixed evidence of the association between high levels of cardiovascular risk factors (CVRF) and the risk for cognitive impairment may be due to confounding of age across studies. We pooled and harmonized individual-level data (30,967 persons, age range 42-96 years) from five prospective cohorts to investigate by 1 year age increments to investigate whether or not there is change in slope describing the association of CVRF to a cognitive outcome (Digit Symbol Substitution Test; DSST). The CVRF included: systolic and diastolic blood pressure, total cholesterol, fasting glucose and body mass index. Linear and quadratic piecewise regression models were fit to the trajectory patterns of these slopes (betas). The pattern of yearly slope changes showed higher CVRF were associated with lower DSST, but associations attenuated toward zero as age increased for all but DBP where 1 year slopes for DBP changed direction from negative to positive from mid- to late-age. Age is not only a driver of cognitive decline-age also modifies the direction and strength of the association of cognitive function to CVRF and cohort age may be one reason why the evidence for CVRF-CD association is mixed.


Subject(s)
Cognition , Cognitive Dysfunction , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Prospective Studies , Risk Factors , Cognitive Dysfunction/epidemiology , Body Mass Index
9.
Res Sq ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260284

ABSTRACT

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n = 719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

10.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245754

ABSTRACT

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Subject(s)
Genome-Wide Association Study , MicroRNAs , Humans , Aged , Genome-Wide Association Study/methods , Multiomics , Memory , Cognition , Polymorphism, Single Nucleotide/genetics
11.
Osteoporos Int ; 35(3): 469-494, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228807

ABSTRACT

The relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm. INTRODUCTION: Previous falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD). METHODS: The resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients. RESULTS: Falls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33-1.51) and men (HR 1.53, 95% CI 1.41-1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27-1.84) in men vs. HR 1.32 (95% CI 1.20-1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men. CONCLUSIONS: A previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Male , Humans , Female , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Prospective Studies , Risk Assessment , Cohort Studies , Risk Factors , Bone Density , Hip Fractures/etiology , Hip Fractures/complications
12.
Osteoporos Int ; 35(5): 785-794, 2024 May.
Article in English | MEDLINE | ID: mdl-38246971

ABSTRACT

Hip fracture risk assessment is an important but challenging task. Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur. We developed a global FEA-computed fracture risk index to increase the prediction accuracy of hip fracture incidence. PURPOSE: Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur to compute the force (fracture load) and energy necessary to break the proximal femur in a particular loading condition. The fracture loads and energies-to-failure are individually associated with incident hip fracture, and provide different structural information about the proximal femur. METHODS: We used principal component analysis (PCA) to develop a global FEA-computed fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and energies-to-failure in four loading conditions of 110 hip fracture subjects and 235 age- and sex-matched control subjects from the AGES-Reykjavik study. Using a logistic regression model, we compared the prediction performance for hip fracture based on the stratified resampling. RESULTS: We referred the first principal component (PC1) of the FE parameters as the global FEA-computed fracture risk index, which was the significant predictor of hip fracture (p-value < 0.001). The area under the receiver operating characteristic curve (AUC) using PC1 (0.776) was higher than that using all FE parameters combined (0.737) in the males (p-value < 0.001). CONCLUSIONS: The global FEA-computed fracture risk index increased hip fracture risk prediction accuracy in males.


Subject(s)
Hip Fractures , Proximal Femoral Fractures , Male , Humans , Hip Fractures/epidemiology , Hip Fractures/etiology , Bone Density , Femur/diagnostic imaging , ROC Curve , Finite Element Analysis
13.
Respir Res ; 25(1): 44, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238732

ABSTRACT

BACKGROUND: A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS: Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS: In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS: In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.


Subject(s)
Lung , Proteomics , Humans , Female , Pregnancy , Aged , Forced Expiratory Volume/genetics , Placenta , Biomarkers
14.
Neurology ; 102(4): e208075, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38290090

ABSTRACT

BACKGROUND AND OBJECTIVES: Higher YKL-40 levels in the CSF are a known biomarker of brain inflammation. We explored the utility of plasma YKL-40 as a biomarker for accelerated brain aging and dementia risk. METHODS: We performed cross-sectional and prospective analyses of 4 community-based cohorts in the United States or Europe: the Age, Gene/Environment Susceptibility-Reykjavik Study, Atherosclerosis Risk in the Communities study, Coronary Artery Risk Development in Young Adults study, and Framingham Heart Study (FHS). YKL-40 was measured from stored plasma by a single laboratory using Mesoscale Discovery with levels log transformed and standardized within each cohort. Outcomes included MRI total brain volume, hippocampal volume, and white matter hyperintensity volume (WMHV) as a percentage of intracranial volume, a general cognitive composite derived from neuropsychological testing (SD units [SDU]), and the risk of incident dementia. We sought to replicate associations with dementia in the clinic-based ACE csf cohort, which also had YKL-40 measured from the CSF. RESULTS: Meta-analyses of MRI outcomes included 6,558 dementia-free participants, and for analysis of cognition, 6,670. The blood draw preceded MRI/cognitive assessment by up to 10.6 years across cohorts. The mean ages ranged from 50 to 76 years, with 39%-48% male individuals. In random-effects meta-analysis of study estimates, each SDU increase in log-transformed YKL-40 levels was associated with smaller total brain volume (ß = -0.33; 95% CI -0.45 to -0.22; p < 0.0001) and poorer cognition (ß = -0.04; 95% CI -0.07 to -0.02; p < 0.01), following adjustments for demographic variables. YKL-40 levels did not associate with hippocampal volume or WMHV. In the FHS, each SDU increase in log YKL-40 levels was associated with a 64% increase in incident dementia risk over a median of 5.8 years of follow-up, following adjustments for demographic variables (hazard ratio 1.64; 95% CI 1.25-2.16; p < 0.001). In the ACE csf cohort, plasma and CSF YKL-40 were correlated (r = 0.31), and both were associated with conversion from mild cognitive impairment to dementia, independent of amyloid, tau, and neurodegeneration status. DISCUSSION: Higher plasma YKL-40 levels were associated with lower brain volume, poorer cognition, and incident dementia. Plasma YKL-40 may be useful for studying the association of inflammation and its treatment on dementia risk.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Aged , Female , Humans , Male , Middle Aged , Biomarkers , Brain/diagnostic imaging , Chitinase-3-Like Protein 1 , Cognition , Cross-Sectional Studies , Dementia/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies
15.
Geroscience ; 46(1): 505-516, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37530894

ABSTRACT

We investigated the associations of plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and total tau (t-tau) with markers of cerebral small vessel disease (SVD) and with incident dementia. We also investigated whether associations of NfL, GFAP, and t-tau with incident dementia were explained by SVD. Data are from a random subsample (n = 1069) of the population-based AGES-Reykjavik Study who underwent brain MRI and in whom plasma NfL, GFAP, and t-tau were measured at baseline (76.1 ± 5.4 years/55.9% women/baseline 2002-2006/follow-up until 2015). A composite SVD burden score was calculated using white matter hyperintensity volume (WMHV), subcortical infarcts, cerebral microbleeds, and large perivascular spaces. Dementia was assessed in a 3-step process and adjudicated by specialists. Higher NfL was associated with a higher SVD burden score. Dementia occurred in 225 (21.0%) individuals. The SVD burden score significantly explained part of the association between NfL and incident dementia. WMHV mostly strongly contributed to the explained effect. GFAP was not associated with the SVD burden score, but was associated with WMHV, and WMHV significantly explained part of the association between GFAP and incident dementia. T-tau was associated with WMHV, but not with incident dementia. In conclusion, the marker most strongly related to SVD is plasma NfL, for which the association with WMHV appeared to explain part of its association with incident dementia. This study suggests that plasma NfL may reflect the contribution of co-morbid vascular disease to dementia. However, the magnitude of the explained effect was relatively small, and further research is required to investigate the clinical implications of this finding.


Subject(s)
Cerebral Small Vessel Diseases , Dementia , Female , Humans , Male , Cerebral Small Vessel Diseases/epidemiology , Dementia/epidemiology , Glial Fibrillary Acidic Protein , Intermediate Filaments , Magnetic Resonance Imaging , tau Proteins/metabolism
16.
Circulation ; 149(4): 305-316, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38047387

ABSTRACT

BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium. METHODS: Blood and tissue PUFA data from 40 885 CVD-free adults were assessed. PUFA levels ≤25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having ≥1 first-degree relative who experienced a CVD event. Relative risks with 95% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction. RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95% CI, 1.02-1.16]; P=0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95% CI, 1.30-1.54), whereas it was 1.25 (95% CI, 1.16-1.33) for family history alone and 1.06 (95% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions. CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Animals , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Risk Factors , Docosahexaenoic Acids , Biomarkers
17.
Hypertension ; 81(1): 193-201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37901957

ABSTRACT

BACKGROUND: Aortic stiffness, assessed as carotid-femoral pulse wave velocity, provides a measure of vascular age and risk for adverse cardiovascular disease outcomes, but it is difficult to measure. The shape of arterial pressure waveforms conveys information regarding aortic stiffness; however, the best methods to extract and interpret waveform features remain controversial. METHODS: We trained a convolutional neural network with fixed-scale (time and amplitude) brachial, radial, and carotid tonometry waveforms as input and negative inverse carotid-femoral pulse wave velocity as label. Models were trained with data from 2 community-based Icelandic samples (N=10 452 participants with 31 126 waveforms) and validated in the community-based Framingham Heart Study (N=7208 participants, 21 624 waveforms). Linear regression rescaled predicted negative inverse carotid-femoral pulse wave velocity to equivalent artificial intelligence vascular age (AI-VA). RESULTS: The AI-VascularAge model predicted negative inverse carotid-femoral pulse wave velocity with R2=0.64 in a randomly reserved Icelandic test group (n=5061, 16%) and R2=0.60 in the Framingham Heart Study. In the Framingham Heart Study (up to 18 years of follow-up; 479 cardiovascular disease, 200 coronary heart disease, and 213 heart failure events), brachial AI-VA was associated with incident cardiovascular disease adjusted for age and sex (model 1; hazard ratio, 1.79 [95% CI, 1.50-2.40] per SD; P<0.0001) or adjusted for age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, prevalent diabetes, hypertension treatment, and current smoking (model 2; hazard ratio, 1.50 [95% CI, 1.24-1.82] per SD; P<0.0001). Similar hazard ratios were demonstrated for incident coronary heart disease and heart failure events and for AI-VA values estimated from carotid or radial waveforms. CONCLUSIONS: Our results demonstrate that convolutional neural network-derived AI-VA is a powerful indicator of vascular health and cardiovascular disease risk in a broad community-based sample.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Deep Learning , Heart Failure , Vascular Stiffness , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Pulse Wave Analysis/methods , Artificial Intelligence , Blood Pressure/physiology , Carotid Arteries , Vascular Stiffness/physiology , Cholesterol , Risk Factors
18.
Eur J Heart Fail ; 26(1): 87-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37936531

ABSTRACT

AIM: To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS: In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION: A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.


Subject(s)
Heart Failure , Humans , Aged , Heart Failure/diagnosis , Heart Failure/epidemiology , Cohort Studies , Stroke Volume , Prospective Studies , Proteomics , Blood Proteins , Prognosis
19.
JMIR Cardio ; 8: e52576, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38152892

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. Common comorbidities are central obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome. Cardiovascular disease is the most common cause of death among people with NAFLD, and lifestyle changes can improve health outcomes. OBJECTIVE: This study aims to explore the acceptability of a digital health program in terms of engagement, retention, and user satisfaction in addition to exploring changes in clinical outcomes, such as weight, cardiometabolic risk factors, and health-related quality of life. METHODS: We conducted a prospective, open-label, single-arm, 12-week study including 38 individuals with either a BMI >30, metabolic syndrome, or type 2 diabetes mellitus and NAFLD screened by FibroScan. An NAFLD-specific digital health program focused on disease education, lowering carbohydrates in the diet, food logging, increasing activity level, reducing stress, and healthy lifestyle coaching was offered to participants. The coach provided weekly feedback on food logs and other in-app activities and opportunities for participants to ask questions. The coaching was active throughout the 12-week intervention period. The primary outcome was feasibility and acceptability of the 12-week program, assessed through patient engagement, retention, and satisfaction with the program. Secondary outcomes included changes in weight, liver fat, body composition, and other cardiometabolic clinical parameters at baseline and 12 weeks. RESULTS: In total, 38 individuals were included in the study (median age 59.5, IQR 46.3-68.8 years; n=23, 61% female). Overall, 34 (89%) participants completed the program and 29 (76%) were active during the 12-week program period. The median satisfaction score was 6.3 (IQR 5.8-6.7) of 7. Mean weight loss was 3.5 (SD 3.7) kg (P<.001) or 3.2% (SD 3.4%), with a 2.2 (SD 2.7) kg reduction in fat mass (P<.001). Relative liver fat reduction was 19.4% (SD 23.9%). Systolic blood pressure was reduced by 6.0 (SD 13.5) mmHg (P=.009). The median reduction was 0.14 (IQR 0-0.47) mmol/L for triglyceride levels (P=.003), 3.2 (IQR 0.0-5.4) µU/ml for serum insulin (s-insulin) levels (P=.003), and 0.5 (IQR -0.7 to 3.8) mmol/mol for hemoglobin A1c (HbA1c) levels (P=.03). Participants who were highly engaged (ie, who used the app at least 5 days per week) had greater weight loss and liver fat reduction. CONCLUSIONS: The 12-week-long digital health program was feasible for individuals with NAFLD, receiving high user engagement, retention, and satisfaction. Improved liver-specific and cardiometabolic health was observed, and more engaged participants showed greater improvements. This digital health program could provide a new tool to improve health outcomes in people with NAFLD. TRIAL REGISTRATION: Clinicaltrials.gov NCT05426382; https://clinicaltrials.gov/study/NCT05426382.

20.
Geroscience ; 46(1): 737-750, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135769

ABSTRACT

A substantial portion of dementia risk can be attributed to modifiable risk factors that can be affected by lifestyle changes. Identifying the contributors to dementia risk could prove valuable. Recently, machine learning methods have been increasingly applied to healthcare data. Several studies have attempted to predict dementia progression by using such techniques. This study aimed to compare the performance of different machine-learning methods in modeling associations between known cognitive risk factors and future dementia cases. A subset of the AGES-Reykjavik Study dataset was analyzed using three machine-learning methods: logistic regression, random forest, and neural networks. Data were collected twice, approximately five years apart. The dataset included information from 1,491 older adults who underwent a cognitive screening process and were considered to have healthy cognition at baseline. Cognitive risk factors included in the models were based on demographics, MRI data, and other health-related data. At follow-up, participants were re-evaluated for dementia using the same cognitive screening process. Various performance metrics for all three machine learning algorithms were assessed. The study results indicate that a random forest algorithm performed better than neural networks and logistic regression in predicting the association between cognitive risk factors and dementia. Compared to more traditional statistical analyses, machine-learning methods have the potential to provide more accurate predictions about which individuals are more likely to develop dementia than others.


Subject(s)
Dementia , Humans , Aged , Dementia/diagnosis , Dementia/epidemiology , Dementia/etiology , Machine Learning , Risk Factors , Cognition , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL
...