ABSTRACT
Deep Brain Stimulation (DBS) is an effective treatment option for patients with dopaminergic complications of Parkinson's disease (PD) and drug-refractory PD tremor. However, DBS and its indications can be challenging, and they are not often debated in the medical community. Through a critical narrative review, the objective of this paper is to improve the comprehension of DBS indications and help to solve the puzzle that this process can be. Proper patient selection is the first step for a good surgical outcome. In this review, then, relevant considerations are discussed, involving PD genes, PD phenotypes, indications of early stages, non-motor symptoms, neuroimaging predictors, comorbidities, and age. Individualized approaches are encouraged, including clinical and radiological factors. Social support during the whole follow-up and expectations alignment are necessary through this process and are also debated.
ABSTRACT
BACKGROUND: Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT: We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION: Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.
Subject(s)
Myoclonic Epilepsies, Progressive , Seizures , Humans , Myoclonic Epilepsies, Progressive/complications , Myoclonic Epilepsies, Progressive/diagnosis , Seizures/diagnosis , Seizures/complications , Seizures/etiology , Seizures/drug therapy , Myoclonus/diagnosis , Myoclonus/etiology , Myoclonus/complications , Myoclonus/drug therapy , Male , Shaw Potassium Channels/genetics , Female , Electroencephalography/methodsABSTRACT
BACKGROUND: Genetic underpinnings in Parkinson's disease (PD) and parkinsonian syndromes are challenging, and recent discoveries regarding their genetic pathways have led to potential gene-specific treatment trials. CASES: We report 3 X-linked levodopa (l-dopa)-responsive parkinsonism-epilepsy syndrome cases due to a hemizygous variant in the phosphoglycerate kinase 1 (PGK1) gene. The likely pathogenic variant NM_000291.4 (PGK1):c.950G > A;p.(Gly317Asp) was identified in a hemizygous state. LITERATURE REVIEW: Only 8 previous cases have linked this phenotype to PGK1, a gene more commonly associated with hemolytic anemia and myopathy. The unusual association of epilepsy, psychiatric symptoms, action tremor, limb dystonia, cognitive symptoms, and l-dopa-responsive parkinsonism must draw attention to PGK1 mutations, especially because this gene is absent from most commercial hereditary parkinsonism panels. CONCLUSIONS: This report aims to shed light on an overlooked gene that causes hereditary parkinsonian syndromes. Further research regarding genetic pathways in PD may provide a better understanding of its pathophysiology and open possibilities for new disease-modifying trials, such as SNCA, LRRK2, PRKN, PINK1, and DJ-1 genes.
Subject(s)
Parkinsonian Disorders , Phosphoglycerate Kinase , Adult , Humans , Male , Middle Aged , Epilepsy/genetics , Epilepsy/drug therapy , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/drug therapy , Levodopa/therapeutic use , Mutation , Parkinsonian Disorders/genetics , Parkinsonian Disorders/drug therapy , Phosphoglycerate Kinase/geneticsABSTRACT
The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurodegenerative diseases is yet to be fully clarified. Rapid worsening and even new-onset cases of those disorders have been reported in association with coronavirus disease 2019 (COVID-19). We describe three cases of neurodegenerative diseases in patients with SARS-CoV-2: a case of Creutzfeldt-Jakob disease during the COVID-19 acute phase, to our knowledge, is the second one described in the literature; a rapidly progressive Alzheimer's Disease; and a patient with frontotemporal dementia, and a quick decline of both cognitive and behavioral domains. This report suggests an association between SARS-CoV-2 infection and a higher probability of developing or accelerating neurodegenerative chronic neurologic conditions. We reinforce the need for a close cognitive follow-up in the aftermath of Sars-Cov2 infection.
ABSTRACT
Subthalamic nucleus deep brain stimulation (STN DBS) is an established therapy for a subset of patients with Parkinson's disease, and the adjustment of DBS parameters is typically guided by the patients' rigidity and tremor. Although these cardinal symptoms remain relatively stable over time, progressive worsening of axial symptoms compromise motor function and quality of life. Because many patients report improvements in their global mobility after gait improvement, we have been adjusting DBS parameters during the long-term after surgery based on gait analysis. Here, we describe a practical strategy for troubleshooting gait problems in PD DBS patients by revising stimulation parameters through "hands-on" programming, which can be a useful alternative approach for improving patients' outcomes after STN DBS.