Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(14): 7145-7153, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38502112

ABSTRACT

The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 µm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 µm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardia lamblia/metabolism , Trophozoites/metabolism , Giardiasis/metabolism , Organelles , Spectrum Analysis
2.
ACS Biomater Sci Eng ; 8(4): 1476-1485, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35263544

ABSTRACT

Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.


Subject(s)
Durapatite , Staphylococcus aureus , Dental Enamel , Durapatite/chemistry , Durapatite/metabolism , Durapatite/pharmacology , Spectrum Analysis , Staphylococcus aureus/metabolism , Surface Properties
3.
Microorganisms ; 9(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34835339

ABSTRACT

Caries is one of the most prevalent diseases worldwide, which is caused by the degradation of the tooth enamel surface. In earlier research the opportunistic pathogen Candida albicans has been associated with the formation of caries in children. Colonization of teeth by C. albicans starts with the initial adhesion of individual yeast cells to the tooth enamel surface. In this study, we visualized the initial colonization of C. albicans yeast cells on pellicle-covered enamel by scanning electron microscopy. To quantitatively unravel the initial adhesion strength, we applied fluidic force microscopy-based single-cell force spectroscopy to examine the key adhesion parameters adhesion force, rupture length and de-adhesion work. We analyzed single saliva-treated or untreated yeast cells on tooth enamel specimens with or without salivary pellicle. Under all tested conditions, adhesion forces in the lower nanonewton range were determined. Furthermore, we have found that all adhesion parameters were enhanced on the pellicle-covered compared to the uncovered enamel. Our data suggest that initial adhesion occurs through a strong interaction between yeast cell wall-associated adhesins and the salivary pellicle. Future SCFS studies may show whether specific management of the salivary pellicle reduces the adhesion of C. albicans on teeth and thus contributes to caries prophylaxis.

5.
Transl Vis Sci Technol ; 9(12): 29, 2020 11.
Article in English | MEDLINE | ID: mdl-33262903

ABSTRACT

Purpose: The purpose of this study was to analyze the concentration-dependent effects of biguanides (polyhexamethylene biguanide [PHMB], chlorhexidine [CH]); diamidines (hexamidine-diisethionate [HD], propamidine-isethionate [PD], dibromopropamidine-diisethionate [DD]); natamycin (NM); miltefosine (MF); povidone iodine (PVPI), and chlorin e6 PDT on Acanthamoeba trophozoites and cysts, in vitro. Methods: Strain 1BU was cultured in peptone-yeast extract-glucose medium. Trophozoites or cysts were cultured in PYG medium containing each agent at 100%, 50%, and 25% of maximum concentration for 2 hours. The percentage of dead trophozoites was determined using a non-radioactive cytotoxicity assay and trypan blue staining. Treated cysts were also maintained on non-nutrient agar Escherichia coli (E.coli) plates and observed for 3 weeks. Results: All tested drugs displayed significant cytotoxic effects on 1BU cells based on the biochemical and staining-based viability assays tested. On non-nutrient agar E. coli plates, neither trophozoites nor freshly formed cysts were observed after PHMB, PD, NM, and PVPI treatment, respectively, within 3 weeks. However, CH-, HD-, DD-, and MF-treated cysts could excyst, multiply, and encyst again. Conclusions: The off-label drugs PHMB, PD, NM, and PVPI are under in vitro conditions more effective against strain 1BU than CH, HD, DD, and MF. Our findings also suggest that the non-nutrient agar E.coli plate assay should be considered as method of choice for the in vitro analysis of the treatment efficacy of anti-amoebic agents. Translational Relevance: Ophthalmologists may optimize the treatment regime against Acanthamoeba keratitis by pre-testing the in vitro susceptibilities of the Acanthamoeba strain against drugs of interest with the non-nutrient E.coli agar plate assay.


Subject(s)
Acanthamoeba castellanii , Amebicides , Acanthamoeba castellanii/drug effects , Amebicides/pharmacology , Animals , Escherichia coli , Triazenes , Trophozoites
6.
Sci Rep ; 10(1): 20992, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268809

ABSTRACT

Staphylococcus aureus is a common cause of catheter-related blood stream infections (CRBSI). The bacterium has the ability to form multilayered biofilms on implanted material, which usually requires the removal of the implanted medical device. A first major step of this biofilm formation is the initial adhesion of the bacterium to the artificial surface. Here, we used single-cell force spectroscopy (SCFS) to study the initial adhesion of S. aureus to central venous catheters (CVCs). SCFS performed with S. aureus on the surfaces of naïve CVCs produced comparable maximum adhesion forces on three types of CVCs in the low nN range (~ 2-7 nN). These values were drastically reduced, when CVC surfaces were preincubated with human blood plasma or human serum albumin, and similar reductions were observed when S. aureus cells were probed with freshly explanted CVCs withdrawn from patients without CRBSI. These findings indicate that the initial adhesion capacity of S. aureus to CVC tubing is markedly reduced, once the CVC is inserted into the vein, and that the risk of contamination of the CVC tubing by S. aureus during the insertion process might be reduced by a preconditioning of the CVC surface with blood plasma or serum albumin.


Subject(s)
Bacterial Adhesion , Catheter-Related Infections/etiology , Central Venous Catheters/microbiology , Staphylococcal Infections/etiology , Staphylococcus aureus/metabolism , Adult , Catheter-Related Infections/microbiology , Humans , Kinetics , Plasma , Risk Factors , Serum Albumin , Staphylococcal Infections/microbiology , Surface Properties
7.
Virulence ; 11(1): 1453-1465, 2020 12.
Article in English | MEDLINE | ID: mdl-33108253

ABSTRACT

Candida albicans-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of C. albicans yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.8-fold increased adhesion forces to CVC surfaces when compared to yeast cells. Coating of CVCs with HBP significantly increased the adhesion of 60-min germinated cells but not of yeast cells and 30-min germinated cells. Under flow conditions comparable to those in major human veins, germinated cells displayed a flow directional-orientated adhesion pattern to HBP-coated CVC material, suggesting the germ tip to serve as the major adhesive region. None of the above-reported phenotypes were observed with germinated cells of an als3Δ deletion mutant, which displayed similar adhesion forces to CVC surfaces as the isogenic yeast cells. Germinated cells of the als3Δ mutant also lacked a clear flow directional-orientated adhesion pattern on HBP-coated CVC material, indicating a central role for Als3 in the adhesion of germinated C. albicans cells to blood exposed CVC surfaces. In the common model of C. albicans, biofilm formation is thought to be mediated primarily by yeast cells, followed by surface-triggered the formation of hyphae. We suggest an extension of this model in which C. albicans germ tubes promote the initial adhesion to blood-exposed implanted medical devices via the germ tube-associated adhesion protein Als3.


Subject(s)
Candida albicans/physiology , Cell Adhesion , Central Venous Catheters/microbiology , Coated Materials, Biocompatible , Fungal Proteins/metabolism , Plasma/metabolism , Plasma/microbiology , Biofilms/growth & development , Candida albicans/pathogenicity , Fungal Proteins/genetics , Humans , Hyphae/growth & development , Single Molecule Imaging
8.
Acta Microbiol Immunol Hung ; 67(1): 23-32, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31833381

ABSTRACT

We aimed to compare LDH release assay, trypan blue and fluorescent stainings, and non-nutrient Escherichia coli plate assay in determining treatment efficacy of antiamoebic agents against Acanthamoeba castellanii trophozoites/cysts, in vitro. 1BU trophozoites/cysts were challenged with 0.02% polyhexamethylene biguanid (PHMB), 0.1% propamidine isethionate (PD), and 0.0065% miltefosine (MF). Efficacies of the drugs were determined by LDH release and trypan blue assays, by Hoechst 33343, calcein-AM, and ethidium homodimer-1 fluorescent dyes, and by a non-nutrient agar E. coli plate assay. All three antiamoebic agents induced a significant LDH release from trophozoites, compared to controls (p < 0.0001). Fluorescent-dye staining in untreated 1BU trophozoites/cysts was negligible, but using antiamoebic agents, there was 59.3%-100% trypan blue, 100% Hoechst 33342, 0%-75.3% calcein-AM, and 100% ethidium homodimer-1 positivity. On E. coli plates, in controls and MF-treated 1BU trophozoites/cysts, new trophozoites appeared within 24 h, encystment occurred after 5 weeks. In PHMB- and PD-treated 1BU throphozoites/cysts, irregularly shaped, smaller trophozoites appeared after 72 h, which failed to form new cysts within 5 weeks. None of the enzymatic- and dye-based viability assays tested here generated survival rates for trophozoites/cysts that were comparable with those yielded with the non-nutrient agar E. coli plate assay, suggesting that the culture-based assay is the best method to study the treatment efficacy of drugs against Acanthamoeba.


Subject(s)
Acanthamoeba castellanii/drug effects , Antiparasitic Agents/pharmacology , Parasitic Sensitivity Tests/methods , Trophozoites/drug effects , Escherichia coli , Fluorescence , L-Lactate Dehydrogenase/analysis , Staining and Labeling
9.
Sci Rep ; 9(1): 16267, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700127

ABSTRACT

Invasion and persistence of bacteria within host cells requires that they adapt to life in an intracellular environment. This adaptation induces bacterial stress through events such as phagocytosis and enhanced nutrient-restriction. During stress, bacteria synthesize a family of proteins known as heat shock proteins (HSPs) to facilitate adaptation and survival. Previously, we determined the Staphylococcus aureus HSP ClpC temporally alters bacterial metabolism and persistence. This led us to hypothesize that ClpC might alter intracellular survival. Inactivation of clpC in S. aureus strain DSM20231 significantly enhanced long-term intracellular survival in human epithelial (HaCaT) and endothelial (EA.hy926) cell lines, without markedly affecting adhesion or invasion. This phenotype was similar across a genetically diverse collection of S. aureus isolates, and was influenced by the toxin/antitoxin encoding locus mazEF. Importantly, MazEF alters mRNA synthesis and/or stability of S. aureus virulence determinants, indicating ClpC may act through the mRNA modulatory activity of MazEF. Transcriptional analyses of total RNAs isolated from intracellular DSM20231 and isogenic clpC mutant cells identified alterations in transcription of α-toxin (hla), protein A (spa), and RNAIII, consistent with the hypothesis that ClpC negatively affects the intracellular survival of S. aureus in non-professional phagocytic cells, via modulation of MazEF and Agr.


Subject(s)
Bacterial Proteins/genetics , Heat-Shock Proteins/genetics , Host-Pathogen Interactions , Phagocytes/immunology , Phagocytes/microbiology , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Bacterial Adhesion , Bacterial Proteins/metabolism , Cytotoxicity, Immunologic , Heat-Shock Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Microbial Viability/immunology , Mutation , Phagocytes/metabolism , Staphylococcal Infections/microbiology , Transcriptional Activation , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...