Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Article in English | MEDLINE | ID: mdl-39352641

ABSTRACT

As a fundamental component of human existence, land is inextricably linked to human development, and its ecological functions are closely associated with multiple sustainable development goals. This paper presents a framework for constructing and optimizing ecological function space, with the Yangtze-to-Huaihe Water Diversion Project area serving as a case study. A comprehensive land ecological index system is established, encompassing natural foundation, land degradation, land production, ecological structure, and ecological protection. An identity-discrepancy-contrary connection method is employed to investigate changes in regional land ecological functions before (2013) and during (2017, 2020, and 2022) the project's construction based on remote sensing data. The results indicated that the mean values of the land ecological index for each period were 0.1883, 0.1981, 0.2253, and 0.1370, respectively. The study calculated the connection, differences, and contradictions in the land ecological impacts across the counties, revealing a gradual decrease in differences and a growing prominence of contradictions. The land ecology of the Yangtze-to-Huaihe Water Diversion Project area is affected by the project construction, particularly within the construction area, showing an overall improvement. Most counties exhibited a trend of ecological improvement compared to the land ecology before the project's construction. However, after the project implementation, most districts demonstrated a trend of ecological deterioration. As the distance from the construction canal increases, the characteristics of each section and stage vary, generally exhibiting an exponential decrease in the land ecological index. The study highlighted the significance of enhancing the land ecological pattern, improving water quality, increasing water supply along the project, and alleviating groundwater overexploitation. The study can serve as a reference for land ecological protection and restoration in water transfer areas and river basins worldwide.

2.
Theranostics ; 14(13): 5200-5218, 2024.
Article in English | MEDLINE | ID: mdl-39267780

ABSTRACT

Rationale: Patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) have a high short-term mortality rate. Semaphorin-6B (SEMA6B) plays a crucial role in the pathogenesis of HBV-ACLF, but its molecular basis remains unclear. This study aimed to elucidate the mechanisms of SEMA6B in HBV-ACLF progression. Methods: A total of 321 subjects with HBV-ACLF, liver cirrhosis (LC), chronic hepatitis B (CHB), and normal controls (NC) from a prospective multicenter cohort were studied. 84 subjects (HBV-ACLF, n = 50; LC, n = 10; CHB, n = 10; NC, n = 14) among them underwent mRNA sequencing using peripheral blood mononuclear cells (PBMCs) to clarify the mechanisms of SEMA6B in HBV-ACLF. These mechanisms were validated through in vitro studies with hepatocytes and macrophages, as well as in vivo using SEMA6B knockout mice and mice treated with synthetic SEMA6B siRNA. Results: Transcriptome analysis of PBMCs showed that SEMA6B was among the most differentially expressed genes when comparing patients with HBV-ACLF to those with LC, CHB, or NC. ROC analysis demonstrated the reliable diagnostic value of SEMA6B for HBV-ACLF in both the sequencing cohort and an external validation cohort (AUROC = 0.9788 and 0.9026, respectively). SEMA6B levels were significantly higher in the HBV-ACLF patients, especially in non-survivors, with high expression mainly observed in macrophages and hepatocytes in liver tissue. Genes significantly associated with highly expressed SEMA6B were enriched in inflammation and apoptosis pathways in HBV-ACLF non-survivors. Overexpression of SEMA6B in macrophages activated systemic inflammatory responses, while its overexpression in hepatocytes inhibited proliferation through G0/G1 cell cycle arrest and induced apoptosis. Knocking out SEMA6B rescued mice with liver failure by improving liver functions, reducing inflammatory responses, and decreasing hepatocyte apoptosis. Transcriptome analysis of liver tissue showed that SEMA6B knockout significantly ameliorated the liver failure signature, significantly downregulating inflammation-related pathways. Importantly, therapeutic delivery of synthetic SEMA6B siRNA also improved liver function, and reduced both inflammation and hepatocyte apoptosis in mice with liver failure. Conclusion: SEMA6B, a potential diagnostic biomarker for HBV-ACLF, exacerbates liver failure through macrophage-mediated systemic inflammation and hepatocyte apoptosis. These findings highlight SEMA6B as a promising early treatment target for HBV-ACLF patients.


Subject(s)
Acute-On-Chronic Liver Failure , Apoptosis , Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Macrophages , Mice, Knockout , Semaphorins , Adult , Female , Humans , Male , Middle Aged , Acute-On-Chronic Liver Failure/virology , Acute-On-Chronic Liver Failure/metabolism , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Hepatocytes/metabolism , Hepatocytes/virology , Inflammation , Leukocytes, Mononuclear/metabolism , Liver Cirrhosis/virology , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Macrophages/metabolism , Mice, Inbred C57BL , Prospective Studies , Semaphorins/metabolism , Semaphorins/genetics
3.
Stat Biopharm Res ; 16(3): 361-370, 2024.
Article in English | MEDLINE | ID: mdl-39184873

ABSTRACT

An adaptive platform trial (APT) is a multi-arm trial in the context of a single disease where treatment arms are allowed to enter or leave the trial based on some decision rule. If a treatment enters the trial later than the control arm, there exist non-concurrent controls who were not randomized between the two arms under comparison. As APTs typically take long periods of time to conduct, temporal drift may occur, which requires the treatment comparisons to be adjusted for this temporal change. Under the causal inference framework, we propose two approaches for treatment comparisons in APTs that account for temporal drift, both based on propensity score weighting. In particular, to address unmeasured confounders, one approach is doubly robust in the sense that it remains valid so long as either the propensity score model is correctly specified or the time effect model is correctly specified. Simulation study shows that our proposed approaches have desirable operating characteristics with well controlled type I error rates and high power with or without unmeasured confounders.

4.
Heliyon ; 10(11): e31748, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961970

ABSTRACT

To build a comprehensive framework for virtual power plant (VPP) development aligned with market dynamics and to devise effective strategies to foster its growth, this study undertakes several key steps. Firstly, it constructs a VPP development framework based on market conditions, to drive the evolution of new power systems and facilitating energy transformation. Secondly, through a blend of theoretical analysis and model construction, the fundamental principles of VPP are systematically elucidated, and a decision model for the VPP development framework, focusing on price demand response, is formulated. Lastly, an optimal scheduling model for the new power system is developed, with its efficacy validated across three distinct scenarios. The findings underscore the critical importance of integrating energy storage technologies, particularly pumped storage hydropower systems, for achieving balance and optimization within new power systems. Model verification reveals that the incorporation of energy storage power stations significantly enhances system stability and efficiency, particularly in addressing the volatility associated with renewable energy sources. Additionally, the analysis indicates that while the adoption of energy storage technologies may marginally increase overall power generation costs, the total power generation cost declines with the integration of battery storage and pumped storage hydropower stations. This suggests that leveraging energy storage technologies not only enhances system operational reliability but also contributes to reducing the overall cost of power production to a certain extent. In summary, this study presents an economic and environmentally sustainable scheduling model for new power systems within the context of market trading environments. By offering both theoretical insights and practical guidance, it aims to support sustainable development and energy transformation initiatives. Ultimately, the study is poised to foster the adoption of clean energy, facilitate the establishment of smart grids, and bolster the sustainable utilization of energy resources, thereby advancing environmental conservation efforts.

5.
CNS Neurosci Ther ; 30(6): e14806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887182

ABSTRACT

AIM: Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS: Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS: GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION: GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.


Subject(s)
Gastric Inhibitory Polypeptide , Glucose Transporter Type 3 , Glucose , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Reactive Oxygen Species , Spinal Cord Injuries , Animals , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neurons/metabolism , Neurons/drug effects , Rats , Reactive Oxygen Species/metabolism , Glucose Transporter Type 3/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Male , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119770, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38897390

ABSTRACT

Microtubule stabilization is critical for axonal growth and regeneration, and many microtubule-associated proteins are involved in this process. In this study, we found that the knockdown of echinoderm microtubule-associated protein-like 1 (EML1) hindered axonal growth in cultured cortical and dorsal root ganglion neurons. We further revealed that EML1 facilitated the acetylation of microtubules and that the impairment of axonal growth due to EML1 inhibition could be restored by treatment with deacetylase inhibitors, suggesting that EML1 affected tubulin acetylation. Moreover, we verified an interaction between EML1 and the alpha-tubulin acetyltransferase 1, which is responsible for the acetylation of alpha-tubulin. We thus proposed that EML1 might regulate microtubule acetylation and stabilization via alpha-tubulin acetyltransferase 1 and then promote axon growth. Finally, we verified that the knockdown of EML1 in vivo also inhibited sciatic nerve regeneration. Our findings revealed a novel effect of EML1 on microtubule acetylation during axonal regeneration.


Subject(s)
Acetyltransferases , Amino Acid Transport System A , Axons , Microtubule-Associated Proteins , Animals , Humans , Mice , Rats , Acetylation , Acetyltransferases/metabolism , Acetyltransferases/genetics , Axons/metabolism , Cells, Cultured , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Microtubule Proteins , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Nerve Regeneration/genetics , Sciatic Nerve/metabolism , Tubulin/metabolism , Tubulin/genetics , Amino Acid Transport System A/metabolism
7.
Adv Healthc Mater ; 13(23): e2400784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896790

ABSTRACT

Immunotherapy has emerged as a powerful weapon against lung cancer, yet only a fraction of patients respond to the treatment. Poly(I:C) (PIC) effectively triggers both innate and adaptive immunity. It can also induce immunogenic cell death (ICD) in tumor cells. However, its efficacy is hindered by its instability in vivo and limited cellular uptake. To address this, PIC is encapsulated in cRGD-functionalized polymersomes (t-PPIC), which significantly increases its stability and uptake, thus activating dendritic cells (DCs) and inducing apoptosis of lung tumor cells in vitro. In a murine LLC lung tumor model, systemic administration of t-PPIC effectively suppresses tumor growth and leads to survival benefits, with 40% of the mice becoming tumor-free. Notably, t-PPIC provokes stronger apoptosis and ICD in tumor tissue and elicits a more potent stimulation of DCs, recruitment of natural killer (NK) cells, and activation of CD8+ T cells, compared to free PIC and nontargeted PPIC controls. Furthermore, when combined with immune checkpoint inhibitors or radiotherapy, t-PPIC amplifies the antitumor immune response, resulting in complete regression in 60% of the mice. These compelling findings underscore the potential of integrin-targeted polymersomal PIC to enhance antitumor immunity by simultaneously inducing ICD and systemic immune activation.


Subject(s)
Dendritic Cells , Immunogenic Cell Death , Poly I-C , Animals , Immunogenic Cell Death/drug effects , Mice , Poly I-C/pharmacology , Poly I-C/chemistry , Dendritic Cells/immunology , Dendritic Cells/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Immunotherapy/methods , Apoptosis/drug effects , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Female , Polymers/chemistry , Polymers/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124516, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38796893

ABSTRACT

Carbon dots (CDs) with blue emission were synthesized by solvothermal method using hydroquinone and 5-aminoisphthalic acid as precursors. The strong oxidation of ClO- caused the fluorescence quenching of CDs at 405 nm, and synchronously generated a new emission peak at 500 nm. Furthermore, upon the addition of Cu2+ to CDs-ClO- system, the green fluorescence at 500 nm was quenched, while the blue emission at 405 nm remained unchanged, due to the complexation between Cu2+ and the amino group on the CDs surface. Meanwhile, the fluorescence color of system changed from blue to bright green and then to dark blue by sequentially increasing the concentrations of ClO- and Cu2+. The fluorescence signal of F500/F405 exhibited a linear relationship with the concentration of ClO- and Cu2+ in a certain range, respectively. Thus, a ratiometric fluorescence sensor based on the obtained CDs were developed to sequentially detect ClO- and Cu2+ with detection limits of 0.40 µM and 0.31 µM, respectively. Additionally, the CDs were mixed with polyvinyl alcohol hydrogel to form test strips, which were successfully used for visual detection of ClO- and Cu2+. Satisfactory results were also obtained in the analysis of ClO- and Cu2+ in actual water samples.

10.
Neoplasia ; 53: 101005, 2024 07.
Article in English | MEDLINE | ID: mdl-38761506

ABSTRACT

Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.


Subject(s)
Adenoma , Cullin Proteins , Disease Models, Animal , Myeloid-Derived Suppressor Cells , Animals , Cullin Proteins/genetics , Cullin Proteins/metabolism , Mice , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Adenoma/pathology , Adenoma/genetics , Adenoma/metabolism , Adenomatous Polyposis Coli Protein/genetics , Humans , Tumor Microenvironment/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/etiology , Gene Deletion , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
11.
Sci Rep ; 14(1): 9906, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689033

ABSTRACT

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Subject(s)
Apoptosis , Cullin Proteins , Intestines , Regeneration , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Apoptosis/radiation effects , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Cullin Proteins/metabolism , Cullin Proteins/genetics , DNA Damage , DNA Repair , Histones/metabolism , Intestines/radiation effects , Intestines/pathology , Mice, Inbred C57BL , Phosphorylation/radiation effects , Rad51 Recombinase/metabolism , Radiation, Ionizing , Regeneration/radiation effects , Tumor Suppressor Protein p53/metabolism , Ubiquitination
12.
Animals (Basel) ; 14(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539966

ABSTRACT

Yeast culture is a complex fermentation product consisting of fermentation substrate, yeast cells and their metabolites. This study investigated the potential of yeast culture in replacing fishmeal in the diet of yellow catfish (Pelteobagrus fulvidraco). First, a basal diet was formulated to contain 160 g/kg fishmeal (CON), and then the dietary fishmeal was decreased to 120, 80, 40 and 0 g/kg via yeast culture inclusion, respectively, to form another four isonitrogenous and isolipidic diets (YC-12, YC-8, YC-4 and YC-0). Yellow catfish (3.00 ± 0.10 g) were fed with the above five diets with triplicates per treatment and 40 fish per replicate. After 8 weeks of feeding, the weight gain (WG), protein efficiency rate and protein retention in the YC-12 group and the feed conversion ratio (FCR) in the YC-12 and YC-8 groups showed no significant differences to the CON group (p > 0.05), but the WG in the YC-8, YC-4 and YC-0 groups was significantly lower, and the FCR in the YC-4 and YC-0 groups was significantly higher than in the CON group (p < 0.05). In terms of the whole-body composition, only the crude lipid content in the YC-0 group decreased significantly (p < 0.05). Compared with the CON group, the aspartate aminotransferase and alanine aminotransferase activities and D-lactic acid content in the YC-0 group were significantly increased, and the total cholesterol content was significantly reduced (p < 0.05). The activities of catalase, superoxide dismutase, and alkaline phosphatase, as well as the content of complement C3 and immunoglobulin M, were significantly increased, while the MDA content was significantly reduced in the YC-12 and YC-8 groups (p < 0.05). There were no significant differences in the intestinal amylase and lipase activity among all the groups (p > 0.05), while the trypsin activity in the YC-12 and YC-8 groups, as well as the diamine oxidase in the YC-4 and YC-0 groups, were significantly higher than those in the CON group (p < 0.05). In the intestine histology, there was a significant decrease in the intestinal villus height in the YC-4 and YC-0 groups as well as in the villus width in the YC-0 group (p < 0.05). In the hepatopancreas histology, lipid droplets appeared in the YC-4 and YC-0 groups, and severe cell vacuolation was observed in the YC-0 group. As a summary, in a practical diet containing 160 g/kg fishmeal, yeast culture can effectively replace 40 g/kg fishmeal without negatively affecting the growth performance, nutrient utilization, serum immune and antioxidant, intestinal and hepatopancreas histology of yellow catfish.

13.
BMC Med ; 22(1): 95, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38439091

ABSTRACT

BACKGROUND: The key role of thrombospondin 1 (THBS1) in the pathogenesis of acute-on-chronic liver failure (ACLF) is unclear. Here, we present a transcriptome approach to evaluate THBS1 as a potential biomarker in ACLF disease pathogenesis. METHODS: Biobanked peripheral blood mononuclear cells (PBMCs) from 330 subjects with hepatitis B virus (HBV)-related etiologies, including HBV-ACLF, liver cirrhosis (LC), and chronic hepatitis B (CHB), and normal controls (NC) randomly selected from the Chinese Group on the Study of Severe Hepatitis B (COSSH) prospective multicenter cohort underwent transcriptome analyses (ACLF = 20; LC = 10; CHB = 10; NC = 15); the findings were externally validated in participants from COSSH cohort, an ACLF rat model and hepatocyte-specific THBS1 knockout mice. RESULTS: THBS1 was the top significantly differentially expressed gene in the PBMC transcriptome, with the most significant upregulation in ACLF, and quantitative polymerase chain reaction (ACLF = 110; LC = 60; CHB = 60; NC = 45) was used to verify that THBS1 expression corresponded to ACLF disease severity outcome, including inflammation and hepatocellular apoptosis. THBS1 showed good predictive ability for ACLF short-term mortality, with an area under the receiver operating characteristic curve (AUROC) of 0.8438 and 0.7778 at 28 and 90 days, respectively. Enzyme-linked immunosorbent assay validation of the plasma THBS1 using an expanded COSSH cohort subjects (ACLF = 198; LC = 50; CHB = 50; NC = 50) showed significant correlation between THBS1 with ALT and γ-GT (P = 0.01), and offered a similarly good prognostication predictive ability (AUROC = 0.7445 and 0.7175) at 28 and 90 days, respectively. ACLF patients with high-risk short-term mortality were identified based on plasma THBS1 optimal cut-off value (< 28 µg/ml). External validation in ACLF rat serum and livers confirmed the functional association between THBS1, the immune response and hepatocellular apoptosis. Hepatocyte-specific THBS1 knockout improved mouse survival, significantly repressed major inflammatory cytokines, enhanced the expression of several anti-inflammatory mediators and impeded hepatocellular apoptosis. CONCLUSIONS: THBS1 might be an ACLF disease development-related biomarker, promoting inflammatory responses and hepatocellular apoptosis, that could provide clinicians with a new molecular target for improving diagnostic and therapeutic strategies.


Subject(s)
Acute-On-Chronic Liver Failure , Thrombospondin 1 , Animals , Humans , Mice , Rats , Biomarkers , Hepatitis B virus , Inflammation , Leukocytes, Mononuclear , Liver Cirrhosis , Prospective Studies , Thrombospondin 1/genetics
14.
Medicine (Baltimore) ; 103(11): e37608, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489674

ABSTRACT

BACKGROUND: Idiopathic mesenteric phlebosclerosis (IMP) is a rare gastrointestinal disease with unclear etiology and pathogenesis. IMP occurring in a patient with liver cirrhosis is more scarcely reported than independent IMP. In this study, we reported a case of IMP occurring in a patient with liver cirrhosis, so as to provide a reference for understanding liver cirrhosis with IMP. METHOD: A 63-year-old man with liver cirrhosis was admitted in the hospital's department of infectious disease because of fatigue and constipation for 1 month. The patient had an irregular medical history of antivirus drug and Chinese herbal medicine intake because of the hepatitis B virus infection. No other abnormalities were found in the functions of the liver, coagulation, renal, or complete blood count. Fecal occult blood tests were all positive in 5 detections. Contrast-enhanced computed tomography revealed liver cirrhosis and showed thickening of the wall of the right hemicolon and multiple calcifications of the mesenteric veins. Mesenteric vein computed tomography venography displayed diffuse colon mural thickening of the right colon and tortuous linear calcification line in the right colic veins. Colonoscopy revealed a purple-blue, swollen, rough, and vanished vascular texture mucosa. He was finically diagnosed as liver cirrhosis with IMP by a series of examinations during hospitalization. RESULTS: His symptoms of fatigue and constipation subsided after conservative treatment and withdraw from Chinese herbal medicine. The patient experienced no obvious discomfort during the follow-up period. CONCLUSION: A comprehensive medical diagnosis is necessary for the discovery of IMP, especially IMP with liver cirrhosis. Liver cirrhosis maybe play a key role in the development of IMP. The regulatory mechanism of liver cirrhosis contributing to IMP needs to be further studied based on more clinical cases.


Subject(s)
Calcinosis , Drugs, Chinese Herbal , Male , Humans , Middle Aged , Drugs, Chinese Herbal/adverse effects , Colon/pathology , Colonoscopy , Calcinosis/pathology , Liver Cirrhosis/complications , Liver Cirrhosis/pathology , Constipation
15.
Clin Trials ; 21(3): 298-307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205644

ABSTRACT

Targeted agents and immunotherapies have revolutionized cancer treatment, offering promising options for various cancer types. Unlike traditional therapies the principle of "more is better" is not always applicable to these new therapies due to their unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes. This review article examines several innovative phase I-II clinical trial designs that utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent patients and identify the optimal biological dose, maximizing the overall therapeutic effect. Specifically, we highlight three categories of phase I-II designs: efficacy-driven, utility-based, and designs incorporating multiple efficacy endpoints. For each design, we review the dose-outcome model, the definition of the optimal biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO designs. Finally, we provide a classification tree to summarize the designs discussed in this article.


Subject(s)
Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Immunotherapy , Neoplasms , Research Design , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods , Clinical Trials, Phase I as Topic/methods , Clinical Trials, Phase II as Topic/methods , Dose-Response Relationship, Drug , Molecular Targeted Therapy/methods , Algorithms , Adaptive Clinical Trials as Topic/methods
16.
Med Phys ; 51(3): 2119-2127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37727132

ABSTRACT

BACKGROUND: The concept of volumetric modulated arc therapy-computed tomography (VMAT-CT) was proposed more than a decade ago. However, its application has been very limited mainly due to the poor image quality. More specifically, the blurred areas in electronic portal imaging device (EPID) images collected during VMAT heavily degrade the image quality of VMAT-CT. PURPOSE: The goal of this study was to propose systematic methods to preprocess EPID images and improve the image quality of VMAT-CT. METHODS: Online region-based active contour method was introduced to binarize portal images. Multi-leaf collimator (MLC) motion modeling was developed to remove the MLC motion blur. Outlier filtering was then applied to replace the remaining artifacts with plausible data. To assess the impact of these preprocessing methods on the image quality of VMAT-CT, 44 clinical VMAT plans for several treatment sites (lung, esophagus, and head & neck) were delivered to a Rando phantom, and several real-patient cases were also acquired. VMAT-CT reconstruction was attempted for all the cases, and image quality was evaluated. RESULTS: All three preprocessing methods could effectively remove the blurred edges of EPID images. The combined preprocessing methods not only saved VMAT-CT from distortions and artifacts, but also increased the percentage of VMAT plans that can be reconstructed. CONCLUSIONS: The systematic preprocessing of portal images improves the image quality of VMAT-CT significantly, and facilitates the application of VMAT-CT as an effective image guidance tool.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Lung
17.
Environ Sci Pollut Res Int ; 30(58): 121834-121850, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962752

ABSTRACT

The development of urban blue-green spaces is highly recommended as a nature-based solution for mitigating the urban heat island phenomenon, improving urban sustainability, and enhancing resident well-being. However, limited attention has been given to the accumulative impact of the cooling effect and the comparison of different types of landscapes. Based on the maximum and accumulative perspectives, this study selected 375 green spaces, water bodies, and urban parks in 25 cities of the Yangtze River Delta (YRD) region in China to quantify their cooling effect. Correlation and regression analyses were employed to identify the dominant factors influencing the cooling performance. The results indicated that (1) compared to other landscape patches, water areas, and parks exhibited a reduction in daily average air temperature by 3.04 and 0.57 °C, respectively. Urban parks provided the largest cooling area (CA) of 56.44 ha in the YRD region, while water bodies demonstrated the highest cooling effect (CE) of 6.88, cooling intensity (CI) of 0.02, and cooling gradient (CG) of 0.99. (2) From the maximum perspective, the perimeter of the patches played a dominant role in CA and CE for all landscape patch types, contributing more than 40% in CA variation. (3) The dominant factors varied among different landscape types from accumulative perspectives. Green spaces were influenced by road density, shape index, and the proportion of water bodies within the CA, whereas water bodies were primarily affected by the coverage of blue spaces. Vegetation growth and densely populated surroundings contributed the most to the cooling of parks. These findings enhanced the comprehension of the cooling effect in comparable urban contexts and provided valuable insights for sustainable urban management.


Subject(s)
Hot Temperature , Parks, Recreational , Cities , Rivers , Sustainable Growth , China , Water
18.
Acta Biomater ; 170: 228-239, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37634830

ABSTRACT

Actively targeted nanomedicines though conceptually attractive for tumor therapy are extremely hard to realize due to problems of premature drug leakage, excessive liver accretion, inadequate tumor uptake, and/or retarded drug release inside tumor cells. Here, we systemically studied the influence of disulfide crosslinking on the in vitro and in vivo performance of integrin-targeting micellar docetaxel (t-MDTX). Of note, t-M5DTX with a high disulfide content was clearly advantageous in terms of stability, intracellular drug release, anti-tumor activity toward αVß3-overexpressing A549 cells, blood circulation and therapeutic efficacy in orthotopic A549-luc lung tumor-bearing mice. t-MDTX induced extraordinary tumor targetability with tumor-to-normal tissue ratios of 1.7-8.3. Further studies indicated that t-M5DTX could effectively eradicate αVß3-overexpressing lung and prostate cancer patient-derived xenografts (PDX), in which ca. 80% mice became tumor-free. This integrin-targeting disulfide-crosslinked micellar docetaxel emerges as a promising actively targeted nanoformulation for tumor therapy. STATEMENT OF SIGNIFICANCE: Nanomedicines have a great potential in treating advanced tumor patients; however, their tumor-targeting ability and therapeutic efficacy remain unsatisfactory. In addition to PEGylation and ligand selection, particle size, stability and drug release behavior are also critical to their performance in vivo. In this paper, we find that small and cRGD-guided disulfide-crosslinked micellar docetaxel (t-MDTX) induces superior tumor uptake and retention but without increasing liver burden, leading to extraordinary selectivity and inhibition of αvß3 overexpressing lung tumors. t-MDTX is further shown to effectively treat αvß3-positive patient-derived tumor models, lending it a high potential for clinical translation.


Subject(s)
Lung Neoplasms , Prostatic Neoplasms , Male , Humans , Animals , Mice , Docetaxel/pharmacology , Micelles , Integrins , Disulfides , Heterografts , Peptides, Cyclic , Lung Neoplasms/drug therapy , Prostatic Neoplasms/drug therapy , Lung , Cell Line, Tumor
19.
JHEP Rep ; 5(9): 100848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37583946

ABSTRACT

Background & Aims: HBV-related acute-on-chronic liver failure (HBV-ACLF) is a complex syndrome associated with high short-term mortality. This study aims to reveal the molecular basis and identify novel HBV-ACLF biomarkers. Methods: Seventy patients with HBV-ACLF and different short-term (28 days) outcomes underwent transcriptome sequencing using peripheral blood mononuclear cells. Candidate biomarkers were confirmed in two external cohorts using ELISA. Results: Cellular composition analysis with peripheral blood mononuclear cell transcriptomics showed that the proportions of monocytes, T cells and natural killer cells were significantly correlated with 28-day mortality. Significant metabolic dysregulation of carbohydrate, energy and amino acid metabolism was observed in ACLF non-survivors. V-set and immunoglobulin domain-containing 4 (VSIG4) was the most robust predictor of patient survival (adjusted p = 1.74 × 10-16; variable importance in the projection = 1.21; AUROC = 0.89) and was significantly correlated with pathways involved in the progression of ACLF, including inflammation, oxidative phosphorylation, tricarboxylic acid cycle and T-cell activation/differentiation. Plasma VSIG4 analysis externally validated its diagnostic value in ACLF (compared with chronic liver disease and healthy groups, AUROC = 0.983). The prognostic performance for 28-/90-day mortality (AUROCs = 0.769/0.767) was comparable to that of three commonly used scores (COSSH-ACLFs, 0.867/0.884; CLIF-C ACLFs, 0.840/0.835; MELD-Na, 0.710/0.737). Plasma VSIG4 level, as an independent predictor, could be used to improve the prognostic performance of clinical scores. Risk stratification based on VSIG4 expression levels (>122 µg/ml) identified patients with ACLF at a high risk of death. The generality of VSIG4 in other etiologies was validated. Conclusions: This study reveals that immune-metabolism disorder underlies poor ACLF outcomes. VSIG4 may be helpful as a diagnostic and prognostic biomarker in clinical practice. Impact and implications: Acute-on-chronic liver failure (ACLF) is a lethal clinical syndrome associated with high mortality. We found significant immune cell alterations and metabolic dysregulation that were linked to high mortality in patients with HBV-ACLF based on transcriptomics using peripheral blood mononuclear cells. We identified VSIG4 (V-set and immunoglobulin domain-containing 4) as a diagnostic and prognostic biomarker in ACLF, which could specifically identify patients with ACLF at a high risk of death.

20.
Environ Res ; 237(Pt 1): 116781, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517488

ABSTRACT

Soil microorganisms and N cycling are important components of biogeochemical cycling processes. In addition, the study of the effects of nitrification and urease inhibitors on N and microorganisms in greenhouse vegetable fields is essential to reducing N loss and greenhouse gas emissions. The effects of nitrification inhibitors [2-chloro-6-(trichloromethyl) pyridine (CP), dicyandiamide (DCD)], and urease inhibitor [N-(n-butyl) thiophosphoric triamide (NBPT)] on soil inorganic N (NH4+-N, NO2--N and NO3--N) concentrations and the production rates of greenhouse gases (N2O, CH4, and CO2) in greenhouse vegetable fields were investigated via indoor incubation experiments. Polymerase chain reaction amplification and high-throughput sequencing technology (Illumina Miseq) were used to explore the community structure and abundance changes of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and denitrifying bacteria (nirK and nirS). The results showed that CP and DCD obviously inhibited NH4+-N conversion, and NO2--N, and NO3--N accumulation, NBPT slowed down urea hydrolysis and NH4+-N production, and the apparent nitrification rates of soil were in the following order: NBPT > DCD > DCD + NBPT > CP + NBPT > CP. Compared with urea treatment, the peak N2O production rate of inhibitor treatment decreased by 73.30-99.30%, and the production rate of CH4 and CO2 decreased by more than 66.16%. DCD and CP reduced the abundance of AOA and AOB, respectively. Furthermore, NBPT hindered the growth of ammonia-oxidizing microorganisms and nirS-type denitrifying bacteria, and urea and nitrification inhibitors were detrimental to the growth of Ensifer and Sinorhizobium in the nirK community. Nitrification and urease inhibitors can effectively slow down nitrification and greenhouse gas emissions, reduce N loss and improve soil quality by inhibiting the growth of ammonia-oxidizing microorganisms and denitrifying bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL