Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Front Pharmacol ; 15: 1415147, 2024.
Article En | MEDLINE | ID: mdl-38803438

As a traditional Chinese medicinal herb with a long history, Codonopsis pilosula (CP) has attracted much attention from the medical community in recent years. This review summarizes the research progress of CP in the medical field in the past 5 years. By searching and analyzing the literature, and combining with Cytoscape software, we comprehensively examined the role and mechanism of action of CP in individual application, combination drug application, and the role and mechanism of action of codonopsis pilosula's active ingredients in a variety of diseases. It also analyzes the medicinal use of CP and its application value in medicine. This review found that CP mainly manifests important roles in several diseases, such as cardiovascular system, nervous system, digestive system, immune system, etc., and regulates the development of many diseases mainly through the mechanisms of inflammation regulation, oxidative stress, immunomodulation and apoptosis. Its rich pharmacological activities and diverse medicinal effects endow CP with broad prospects and application values. This review provides valuable reference and guidance for the further development of CP in traditional Chinese medicine.

2.
Front Pharmacol ; 15: 1375110, 2024.
Article En | MEDLINE | ID: mdl-38645557

Introduction: Head and neck cancer is one of the most common tumors worldwide. However, drug resistance in its treatment has become a major factor limiting the efficacy. This study aims to comprehensively understand the current status of research in this field. Methods: The study analyzes papers related to therapeutic resistance in head and neck cancer published between 2000 and 2023 in the Web of Science Core Collection To achieve the research objectives, we searched the WoSCC for research and review papers on therapeutic resistance in head and neck cancer from 2000 to 2023, screened the English literature, and analyzed the research hotspots, academic collaborations, and trends in detail using tools such as Citespace, SCImago Graphica, and VOS viewer. Results: This study summarizes 787 head and neck cancer treatment resistance publications from WoSCC. The analysis showed that China and the United States are the major contributors in this field, and Grandis Jennifer R and Yang Jai-Sing are the key scholars. Keyword analysis showed that "cisplatin resistance" is a continuing focus of attention, while "Metastasis" and "Ferroptosis" may be emerging research hotspots. Literature clustering analysis pointed out that "Ferroptosis", "Immunotherapy" and "ERK signaling" were the recent hotspots that received extensive attention and citations. Finally, we discuss the current status and challenges in drug-resistant therapies for head and neck cancer. Conclusion: This study is the first comprehensive bibliometric analysis of drug resistance in head and neck cancer. Reveals current trends and helps researchers grasp cutting-edge hotspots in the field.

3.
Cell Signal ; 114: 111002, 2024 02.
Article En | MEDLINE | ID: mdl-38048860

Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/metabolism
4.
Front Pharmacol ; 14: 1256188, 2023.
Article En | MEDLINE | ID: mdl-37745055

Introduction: Network pharmacology has emerged as a forefront and hotspot in anti-cancer. Traditional anti-cancer drugs are limited by the paradigm of "one cancer, one target, one drug," making it difficult to address the challenges of recurrence and drug resistance. However, the main advantage of network pharmacology lies in its approach from the perspective of molecular network relationships, employing a "one arrow, multiple targets" strategy, which provides a novel pathway for developing anti-cancer drugs. This study employed a bibliometric analysis method to examine network pharmacology's application and research progress in cancer treatment from January 2008 to May 2023. This research will contribute to revealing its forefront and hotspots, offering new insights and methodologies for future investigations. Methods: We conducted a literature search on network pharmacology research in anti-cancer (NPART) from January 2008 to May 2023, utilizing scientific databases such as Web of Science Core Collection (WoSCC) and PubMed to retrieve relevant research articles and reviews. Additionally, we employed visualization tools such as Citespace, SCImago Graphica, and VOSviewer to perform bibliometric analysis. Results: This study encompassed 3,018 articles, with 2,210 articles from WoSCC and 808 from PubMed. Firstly, an analysis of the annual national publication trends and citation counts indicated that China and the United States are the primary contributing countries in this field. Secondly, the recent keyword analysis revealed emerging research hotspots in "tumor microenvironment," "anti-cancer drugs," and "traditional Chinese medicine (TCM). " Furthermore, the literature clustering analysis demonstrated that "calycosin," "molecular mechanism," "molecular docking," and "anti-cancer agents" were widely recognized research hotspots and forefront areas in 2023, garnering significant attention and citations in this field. Ultimately, we analyzed the application of NPART and the challenges. Conclusion: This study represents the first comprehensive analysis paper based on bibliometric methods, aiming to investigate the forefront hotspots of network pharmacology in anti-cancer research. The findings of this study will facilitate researchers in swiftly comprehending the current research trends and forefront hotspots in the domain of network pharmacology in cancer research.

5.
Front Oncol ; 13: 1055717, 2023.
Article En | MEDLINE | ID: mdl-37538124

Introduction: The incidence of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent tumors, is increasing rapidly worldwide. Cuproptosis, as a new copper-dependent cell death form, was proposed recently. However, the prognosis value and immune effects of cuproptosis-related lncRNAs (CRLs) have not yet been elucidated in HNSCC. Methods: In the current study, the expression pattern, differential profile, clinical correlation, DNA methylation, functional enrichment, univariate prognosis factor, and the immune effects of CRLs were analyzed. A four-CRL signature was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. Results: Results showed that 20 CRLs had significant effects on the stage progression of HNSCC. Sixteen CRLs were tightly correlated with the overall survival (OS) of HNSCC patients. Particularly, lnc-FGF3-4 as a single risk factor was upregulated in HNSCC tissues and negatively impacted the prognosis of HNSCC. DNA methylation probes of cg02278768 (MIR9-3HG), cg07312099 (ASAH1-AS1), and cg16867777 (TIAM1-AS1) were also correlated with the prognosis of HNSCC. The four-CRL signature that included MAP4K3-DT, lnc-TCEA3-1, MIR9-3HG, and CDKN2A-DT had a significantly negative effect on the activation of T cells follicular helper and OS probability of HNSCC. Functional analysis revealed that cell cycle, DNA replication, and p53 signal pathways were enriched. Discussion: A novel CRL-related signature has the potential of prognosis prediction in HNSCC. Targeting CRLs may be a promising therapeutic strategy for HNSCC.

8.
Cancers (Basel) ; 14(18)2022 Sep 07.
Article En | MEDLINE | ID: mdl-36139518

Riceberry has recently been acknowledged for its beneficial pharmacological effects. Riceberry bran oil (RBBO) exhibited anti-proliferation activity in various cancer cell lines. However, animal studies of RBBO on anti-carcinogenicity and its molecular inhibitory mechanism have been limited. This study purposed to investigate the chemopreventive effects of RBBO on the carcinogen-induced liver and colorectal carcinogenesis in rats. Rats were injected with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) and further orally administered with RBBO equivalent to 100 mg/kg body weight of γ-oryzanol 5 days/week for 10 weeks. RBBO administration suppressed preneoplastic lesions including hepatic glutathione S-transferase placental form positive foci and colorectal aberrant crypt foci. Accordingly, RBBO induced hepatocellular and colorectal cell apoptosis and reduced pro-inflammatory cytokine expression. Interestingly, RBBO effectively promoted the alteration of gut microbiota in DEN- and DMH-induced rats, as has been shown in the elevated Firmicutes/Bacteroidetes ratio. This outcome was consistent with an increase in butyrate in the feces of carcinogen-induced rats. The increase in butyrate reflects the chemopreventive properties of RBBO through the mechanisms of its anti-inflammatory properties and cell apoptosis induction in preneoplastic cells. This would indicate that RBBO containing γ-oryzanol, phytosterols, and tocols holds significant potential in the prevention of cancer.

9.
Foods ; 11(15)2022 Aug 04.
Article En | MEDLINE | ID: mdl-35954099

Purple rice has gained attention for its health promoting potential due to a high content of bioactive phytochemicals. The heat generated during cooking alters the quality and quantity of nutrients and phytochemicals in food. This study aimed to investigate the phytochemical profile and chemopreventive properties of cooked glutinous purple rice using cell-based assays and a rat model. Purple rice was cooked in a rice cooker and was then further extracted with solvents to obtain dichloromethane and methanol extracts. The methanol extracts of glutinous purple rice contained great amounts of phenolics, flavonoids, and anthocyanins. Protocatechuic acid (2.26-5.40 mg/g extract) and cyanidin 3-glucoside (34.3-65.7 mg/g extract) were the major phenolic acid and anthocyanin contents, respectively. After cooking, the content of anthocyanins, γ-oryzanols, and phytosterols decreased, while the amount of some phenolic acid and tocol contents increased. Methanol extracts of glutinous purple rice inhibited reactive oxygen species production about 60% in PMA-treated peripheral blood mononuclear cells, reduced nitric oxide formation in LPS-induced RAW 264.7 cells (26-39% inhibition), and exhibited antimutagenicity against several mutagens using the Ames test, but dichloromethane extracts presented only mild anti-inflammatory activities. Although methanol extracts induced mild mutagenicity (mutagenic index 2.0-2.5), they did not induce micronucleated hepatocyte formation and certain hepatic CYP450 isozyme activities in rats. However, the mutagenicity of the methanol extract significantly declined after cooking. In summary, the methanol extract of the cooked glutinous purple rice might be a promising cancer chemopreventive fraction, which was neither genotoxic nor posing adverse effects on phytochemical-drug interaction in rats.

10.
Front Nutr ; 9: 1032771, 2022.
Article En | MEDLINE | ID: mdl-36618678

Cancer prevention using dietary phytochemicals holds great potential, particularly in the alternative treatment of liver cancer. Our previous study found that the methanol extract of cooked purple rice performed various biological functions including antioxidant, anti-inflammatory, and antimutagenic activities in in vitro assays. This study aimed to evaluate the chemopreventive effects of cooked glutinous purple rice extract (CRE) obtained from routine rice cooking method on diethylnitrosamine (DEN)-induced hepatic preneoplastic lesions in rats, along with its inhibitory mechanisms. CRE containing γ-oryzanols and high amounts of polyphenolic compounds, particularly cyanidin-3-glucoside, was fed to rats over a period 15 weeks. Additionally, injections of triple DEN at a concentration of 100 mg/kg BW were administered to rats once a week during the second, third, and fourth weeks of the experiment. The results revealed that CRE did not induce the formation of glutathione S-transferase placental form (GST-P) positive foci as a precancerous lesion during rat hepatocarcinogenesis, indicating non-carcinogenicity. Furthermore, CRE significantly reduced the number and size of GST-P positive foci in DEN-initiated rats. It also modulated microenvironment homeostasis by reducing the number of PCNA positive hepatocytes and by enhancing the number of apoptotic positive hepatocytes in the livers of DEN-initiated rats. Using RT-PCR analysis, CRE decreased the mRNA expression of some proinflammatory mediators, including interleukin-6, interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase 2, by attenuating the expression of cyclin E, the proliferation marker, while also inducing the expression of the apoptotic gene, Bcl2 associated X. The inhibitory mechanism at the early stages of hepatocarcinogenesis of CRE may be involved with the attenuation of cell proliferation, the enhancement of apoptosis, and the modulation of the proinflammatory system. Anthocyanins, flavonoids, and γ-oryzanol represent a group of promising chemopreventive agents in cooked glutinous purple rice extract. The outcomes of this study can provide an improved understanding of the potential role of the phytochemicals contained in cooked purple glutinous rice with regard to cancer alleviation.

11.
Mol Cancer ; 19(1): 166, 2020 11 24.
Article En | MEDLINE | ID: mdl-33234130

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the second most common malignant tumor in head and neck. Autophagy and circular RNAs (circRNAs) play critical roles in cancer progression and chemoresistance. However, the function and mechanism of circRNA in autophagy regulation of LSCC remain unclear. METHODS: The autophagy-suppressive circRNA circPARD3 was identified via RNA sequencing of 107 LSCC tissues and paired adjacent normal mucosal (ANM) tissues and high-content screening. RT-PCR, Sanger sequencing, qPCR and fluorescence in situ hybridization were performed to detect circPARD3 expression and subcellular localization. Biological functions of circPARD3 were assessed by proliferation, migration, invasion, autophagic flux, and chemoresistance assays using in vitro and in vivo models. The mechanism of circPARD3 was investigated by RNA immunoprecipitation, RNA pulldown, luciferase reporter assays, western blotting and immunohistochemical staining. RESULTS: Autophagy was inhibited in LSCC, and circPARD3 was upregulated in the LSCC tissues (n = 100, p < 0.001). High circPARD3 level was associated with advanced T stages (p < 0.05), N stages (p = 0.001), clinical stages (p < 0.001), poor differentiation degree (p = 0.025), and poor prognosis (p = 0.002) of LSCC patients (n = 100). Functionally, circPARD3 inhibited autophagy and promoted LSCC cell proliferation, migration, invasion and chemoresistance. We further revealed that activation of the PRKCI-Akt-mTOR pathway through sponging miR-145-5p was the main mechanism of circPARD3 inhibited autophagy, promoting LSCC progression and chemoresistance. CONCLUSION: Our study reveals that the novel autophagy-suppressive circPARD3 promotes LSCC progression and chemoresistance through the PRKCI-Akt-mTOR pathway, providing new insights into circRNA-mediated autophagy regulation and potential biomarker and target for LSCC treatment.


Autophagy , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/pathology , RNA, Circular/genetics , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Cycle Proteins , Cell Proliferation , Cisplatin/pharmacology , Disease Progression , Female , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Prognosis , Protein Kinase C/genetics , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Survival Rate , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Cell Death Dis ; 11(10): 919, 2020 10 26.
Article En | MEDLINE | ID: mdl-33106477

Spindle and kinetochore-associated complex subunit 3 (SKA3) is a well-known regulator of chromosome separation and cell division, which plays an important role in cell proliferation. However, the mechanism of SKA3 regulating tumor proliferation via reprogramming metabolism is unknown. Here, SKA3 is identified as an oncogene in laryngeal squamous cell carcinoma (LSCC), and high levels of SKA3 are closely associated with malignant progression and poor prognosis. In vitro and in vivo experiments demonstrate that SKA3 promotes LSCC cell proliferation and chemoresistance through a novel role of reprogramming glycolytic metabolism. Further studies reveal the downstream mechanisms of SKA3, which can bind and stabilize polo-like kinase 1 (PLK1) protein via suppressing ubiquitin-mediated degradation. The accumulation of PLK1 activates AKT and thus upregulates glycolytic enzymes HK2, PFKFB3, and PDK1, resulting in enhancement of glycolysis. Furthermore, our data reveal that phosphorylation at Thr360 of SKA3 is critical for its binding to PLK1 and the increase in glycolysis. Collectively, the novel oncogenic signal axis "SKA3-PLK1-AKT" plays a critical role in the glycolysis of LSCC. SKA3 may serve as a prognostic biomarker and therapeutic target, providing a potential strategy for proliferation inhibition and chemosensitization in tumors, especially for LSCC patients with PLK1 inhibitor resistance.


Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Laryngeal Neoplasms/drug therapy , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Cell Proliferation , Drug Resistance, Neoplasm , Glycolysis , Heterografts , Humans , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Male , Mice , Mice, Knockout , Mice, Nude , Molecular Targeted Therapy , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Polo-Like Kinase 1
13.
J Cancer ; 11(18): 5329-5344, 2020.
Article En | MEDLINE | ID: mdl-32742479

At present, no blood-based biomarkers have been used in clinical practice for laryngeal squamous cell carcinoma (LSCC). Increasing evidence suggests that circulating exosomal microRNAs (miRNAs) may serve as potential diagnostic biomarkers for various cancers. This study aims to identify and evaluate serum exosomal miRNAs for LSCC diagnosis. The ExoQuick solution (EQ), which provides a high-yield and is a highly efficient exosome isolation method, was selected to isolate serum exosomes in the current study. In LSCC samples, exosome concentrations were higher than in healthy control (HC) samples. RNA-seq analysis identified a total of 1608 miRNAs, with 34 upregulated and 41 downregulated in LSCC samples relative to HC samples. Furthermore, qRT-PCR showed that miR-941 is significantly upregulated in LSCC serum exosomes, with this same trend seen in LSCC tissues and cells. Moreover, when examining miR-941 in cell lines, miR-941 overexpression promoted proliferation and invasion, while miR-941 knockdown inhibited cell proliferation and invasion. ROC curve analysis showed that miR-941 has an area under the curve (AUC) of 0.797 (95% CI = 0.676-0.918) for distinguishing LSCC patients from HCs. In conclusion, serum exosomal miR-941 may serve as a promising oncogenic biomarker for diagnosing LSCC, and has the potential as a therapeutic target.

14.
Mol Cancer ; 19(1): 99, 2020 06 02.
Article En | MEDLINE | ID: mdl-32487167

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck. LSCC patients have seriously impaired vocal, respiratory, and swallowing functions with poor prognosis. Circular RNA (circRNA) has attracted great attention in cancer research. However, the expression patterns and roles of circRNAs in LSCC remain largely unknown. METHODS: RNA sequencing was performed on 57 pairs of LSCC and matched adjacent normal mucosa tissues to construct circRNA, miRNA, and mRNA expression profiles. RT-PCR, qPCR, Sanger sequencing, and FISH were undertaken to study the expression, localization, and clinical significance of circCORO1C in LSCC tissues and cells. The functions of circCORO1C in LSCC were investigated by RNAi-mediated knockdown, proliferation analysis, EdU staining, colony formation assay, Transwell assay, and apoptosis analysis. The regulatory mechanisms among circCORO1C, let-7c-5p, and PBX3 were investigated by luciferase assay, RNA immunoprecipitation, western blotting, and immunohistochemistry. RESULTS: circCORO1C was highly expressed in LSCC tissues and cells, and this high expression was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circCORO1C inhibited the proliferation, migration, invasion, and in vivo tumorigenesis of LSCC cells. Mechanistic studies revealed that circCORO1C competitively bound to let-7c-5p and prevented it from decreasing the level of PBX3, which promoted the epithelial-mesenchymal transition and finally facilitated the malignant progression of LSCC. CONCLUSIONS: circCORO1C has an oncogenic role in LSCC progression and may serve as a novel target for LSCC therapy. circCORO1C expression has the potential to serve as a novel diagnostic and prognostic biomarker for LSCC detection.


Biomarkers, Tumor/metabolism , Homeodomain Proteins/metabolism , Laryngeal Neoplasms/pathology , MicroRNAs/genetics , Microfilament Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Circular/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Prognosis , Proto-Oncogene Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Int J Biol Sci ; 16(7): 1264-1273, 2020.
Article En | MEDLINE | ID: mdl-32174800

Dyschromatosis universalis hereditaria (DUH) is an autosomal dominant pigmentary genodermatosis characterized by the presence of patches of hyperpigmentation and hypopigmented macules distributed over the body, with most cases reported in Asia. DUH is a heterogeneous disease and a small portion of patients carry the ABCB6 variant. In the present study, exome sequencing of four generations of a Chinese family with DUH identified a c.1761C>G (p.Ser587Arg) mutation in exon 15 of SAM and SH3 domain containing 1 (SASH1) that was found to co-segregate in some family members. Immunohistological analysis of biopsy specimens showed that SASH1 was diffusely distributed in all layers of the epidermis, suggesting increased transepithelial migration of melanocytes (MCs). The point mutation c.1761C>G of SASH1 was successfully induced in immortalized human melanocyte (PIG1) cells, which resulted in the downregulation of SASH1 expression. Bioinformatics analysis showed that mutated SASH1 downregulated thrombospondin 1 (THBS1) expression and inactivated transforming growth factor beta 1 (TGF-ß1) signaling. TGF-ß1 expression by PIG1cells was found to negatively regulate SASH1 protein expression. Transwell migration and wound-healing assays showed an increase in the migration and invasion capabilities of the cells carrying the mutation. Further, SASH1 mutations induced downregulation of melanin content. The study results suggest cross-talking between SASH1-TGF-ß1 signaling, demonstrating the proposed MC migration modulation models and affecting melanin trafficking in the epithelium.


Hyperpigmentation/metabolism , Melanins/metabolism , Melanocytes/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Suppressor Proteins/metabolism , Adolescent , Adult , Cell Movement/physiology , Child , Female , Humans , Male , Signal Transduction/physiology , Young Adult
16.
Onco Targets Ther ; 12: 10441-10453, 2019.
Article En | MEDLINE | ID: mdl-31819525

BACKGROUND: Recent studies revealed that miR-424-5p regulates the malignant behavior of multiple cancer types. However, the expression and function of miR-424-5p in laryngeal squamous cell carcinoma (LSCC) is unclear. PURPOSE: This study aimed to evaluate the association of miR-424-5p level with clinical features of LSCC and investigate the effect and potential mechanism of miR-424-5p on LSCC progression. METHODS: The expression of miR-424-5p in LSCC and paired adjacent normal margin (ANM) tissues from 106 patients with LSCC were analyzed by quantitative PCR (qPCR), and clinical significance was analyzed. Target genes of miR-424-5p were predicted, followed by functional annotation. The functional role of miR-424-5p in LSCC was investigated by molecular and cellular experiments with LSCC cell lines, with flow cytometry used for cell cycle analysis. In addition, miR-424-5p regulation of the predicted target gene cell adhesion molecule 1 (CADM1) was validated by qPCR, Western blot analysis and luciferase reporter assay. RESULTS: miR-424-5p was upregulated in LSCC versus ANM tissues. High miR-424-5p level was significantly associated with poor differentiation, advanced tumor stage and cervical lymph node metastasis. Bioinformatics analysis showed that miR-424-5p target genes are mainly enriched in biological processes of the cell cycle, cell division, and negative regulation of cell migration, and were involved in multiple cancer-related pathways. Overexpression of miR-424-5p promoted proliferation, migration, invasion, and adhesion of LSCC cells and affected the cell cycle progression. Additionally, CADM1 was a direct target of miR-424-5p in LSCC cells. CONCLUSION: miR-424-5p functions as an oncogene to promote the aggressive progression of LSCC, and CADM1 is a direct downstream target of miR-424-5p in LSCC cells. miR-424-5p may be a potential therapeutic target in LSCC.

17.
Mol Ther ; 27(2): 365-379, 2019 02 06.
Article En | MEDLINE | ID: mdl-30341010

Laryngeal squamous cell carcinoma (LSCC) is a common form of head and neck cancer with poor prognosis. However, the mechanism underlying the pathogenesis of LSCC remains unclear. Here, we demonstrated increased expression of fascin actin-bundling protein 1 (FSCN1) and decreased expression of microRNA-145-5p (miR-145-5p) in a clinical cohort of LSCC. Luciferase assay revealed that miR-145-5p is a negative regulator of FSCN1. Importantly, low miR-145-5p expression was correlated with TNM (tumor, node, metastasis) status and metastasis. Moreover, cases with low miR-145-5p/high FSCN1 expression showed poor prognosis, and these characteristics together served as independent prognostic indicators of survival. Gain- and loss-of-function studies showed that miR-145-5p overexpression or FSCN1 knockdown inhibited LSCC migration, invasion, and growth by suppressing the epithelial-mesenchymal transition along with inducing cell-cycle arrest and apoptosis. Additionally, hypermethylation of the miR-145-5p promoter suggested that repression of miR-145-5p arises through epigenetic inactivation. LSCC tumor growth in vivo could be inhibited by using miR-145-5p agomir or FSCN1 small interfering RNA (siRNA), which highlights the potential for clinical translation. Collectively, our findings indicate that miR-145-5p plays critical roles in inhibiting the progression of LSCC by suppressing FSCN1. Both miR-145-5p and FSCN1 are important potential prognostic markers and therapeutic targets for LSCC.


Carrier Proteins/metabolism , DNA Methylation/physiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , MicroRNAs/genetics , Microfilament Proteins/metabolism , Promoter Regions, Genetic/genetics , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carrier Proteins/genetics , Cell Line , Cell Line, Tumor , DNA Methylation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/physiology , Microfilament Proteins/genetics
18.
Mol Med Rep ; 16(5): 5863-5870, 2017 Nov.
Article En | MEDLINE | ID: mdl-28849105

The present study aimed to investigate the variations of the gene network and biological functions induced by hsa­miR­145­5p in the laryngeal squamous cell carcinoma (LSCC) cell line Tu­177. A hsa­miR­145­5p­overexpressed Tu­177 cell model was established, and the gene expression microarray data of miR­145­5p­overexpressed cells and negative control (NC) cells were analyzed. The differentially expressed genes (DEGs) between two groups were identified, and their potential functions were predicted by functional enrichment analysis. Furthermore, the targets of miR­145­5p were identified from the DEGs, and their potential functions and protein­protein interactions (PPIs) were analyzed. The mRNA expressions of acetyl­CoA carboxylase ß (ACACB), fibroblast growth factor receptor 1 (FGFR1), protein phosphatase 3 catalytic subunit a (PPP3CA) and spleen associated tyrosine kinase (SYK), were analyzed via quantitative polymerase chain reaction. A total of 1,501 upregulated and 887 downregulated genes were identified in the hsa­miR­145­5p­overexpressed Tu­177 cells, compared with the NC cells. Of these DEGs, 164 upregulated and 221 downregulated genes were predicted to be targeted by hsa­miR­145­5p. The upregulated target genes were primarily associated with functions of immunity, whereas the downregulated target genes were significantly enriched in the p53 signaling pathway. In the PPI network consisting of 267 target genes, the upregulated ACACB had the greatest degree and interacted with downregulated genes including PPP3CA and SYK, in addition to upregulated genes, including FGFR1. The mRNA expressions of ACACB and FGFR1were markedly enhanced in miR­145­5p­overexpressed Tu­177 cells, whereas overexpressing miR­145­5p significantly reduced mRNA expression of PPP3CA and SYK. hsa­miR­145­5p may exhibit an anticancer role in LSCC via regulating multiple cell processes, including cell proliferation and invasion, fatty acid metabolism, immunity and p53 signaling pathway. These findings provide novel information for the future investigation of miR­145­5p functions in LSCC.


Carcinoma, Squamous Cell/genetics , Laryngeal Neoplasms/genetics , MicroRNAs/genetics , Protein Interaction Maps/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Humans , Laryngeal Neoplasms/pathology , Microarray Analysis , Signal Transduction/genetics
19.
Biosci Biotechnol Biochem ; 78(10): 1648-55, 2014.
Article En | MEDLINE | ID: mdl-25051980

The polyphenol oxidase (PPO) is involved in undesirable browning in many plant foods. Although the PPOs have been studied by several researchers, the isolation and expression profiles of PPO gene were not reported in rubber tree. In this study, a new PPO gene, HbPPO, was isolated from Hevea brasiliensis. The sequence alignment showed that HbPPO indicated high identities to plant PPOs and belonged to dicot branch. The cis-acting regulatory elements related to stress/hormone responses were predicted in the promoter region of HbPPO. Real-time RT-PCR analyses showed that HbPPO expression varied widely depending on different tissues and developmental stages of leaves. Besides being associated with tapping panel dryness, the HbPPO transcripts were regulated by ethrel, wounding, H2O2, and methyl jasmonate treatments. Moreover, the correlation between latex coagulation rate and PPO activity was further confirmed in this study. Our results lay the foundation for further analyzing the function of HbPPO in rubber tree.


Catechol Oxidase/genetics , Gene Expression Regulation, Plant , Hevea/enzymology , Hevea/genetics , Amino Acid Sequence , Base Sequence , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Cloning, Molecular , Computational Biology , Latex/chemistry , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic/genetics
20.
ACS Appl Mater Interfaces ; 2(5): 1331-42, 2010 May.
Article En | MEDLINE | ID: mdl-20441181

Reinforcement efficiency of different types of carbon nanotubes (CNT) have been compared in polyacrylonitrile (PAN) films at nanotube loadings of 5, 10, and 20 wt %. The films are characterized for mechanical, dynamic-mechanical, and thermomechanical properties, electrical conductivity, as well as structural analysis. PAN/CNT composite films exhibit electrical conductivities up to 5500 S/m. Based on X-ray diffraction, PAN crystallinity was shown to increase with the presence of CNT. PAN-CNT interactions in the various composites were compared using conventional activation energy analysis. The strongest physical interaction between PAN and CNT was found in samples containing single-wall carbon nanotubes (SWNT). CNT surface area was also measured using nitrogen gas adsorption and correlated with PAN-CNT composite film mechanical properties, in an effort to better understand PAN-CNT interactions for different CNT morphologies. Solvent behavior of various composite films has also been investigated. The presence of CNT was found to improve PAN solvent resistance.


Acrylic Resins/chemistry , Manufactured Materials/analysis , Membranes, Artificial , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Materials Testing , Particle Size , Surface Properties
...