Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.564
Filter
1.
Food Chem ; 462: 141021, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226644

ABSTRACT

Gelatin have excellent film-forming and barrier properties, but its lack of biological activity limits its application in packaging. In this study, fish gelatin incorporated with apple polyphenol/cumin essential oil composite films were successfully prepared by melt extrusion. The cross-linking existed in gelatin and apple polyphenol improved the thermal stability and oxidation resistance of the film. The synergistic effect of apple polyphenols and cumin essential oil decreased the sensitivity of the film to water, especially the water solubility decreased from 41.60 % to 26.07 %. The plasticization of essential oil nearly doubled the elongation at break while maintaining the tensile strength of the film (11.45 MPa). Furthermore, the FG-CEO-AP film can inhibit peroxide value to extend the shelf life about 20 days in the walnut oil preservation. In summary, the apple polyphenol/cumin essential oil of FG film exhibits excellent comprehensive properties and high preparation efficiency for utilization as an active packaging material.


Subject(s)
Food Packaging , Gelatin , Juglans , Plant Oils , Food Packaging/instrumentation , Gelatin/chemistry , Juglans/chemistry , Plant Oils/chemistry , Oils, Volatile/chemistry , Tensile Strength , Malus/chemistry , Solubility
2.
Environ Monit Assess ; 196(11): 1021, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367949

ABSTRACT

The environmental pollution and health effects caused by pesticide production have consistently garnered considerable research interest. In the present study, the concentrations of five triazole fungicides (TFs) in air, indoor dust, and diet were monitored around a pesticide factory in eastern China from November 2020 to May 2021. The levels of five TFs in each sample were determined via UPLC‒MS/MS. For a health risk assessment, the United States Environmental Protection Agency's deterministic method was applied. The findings revealed that the total concentrations of the five TFs around the monitoring area ranged from 0.29 to 5.85 ng/m3 in outdoor air, 287.4 to 9878.5 µg/kg in indoor dust, 0.0578 to 4.948 µg/kg in vegetables, and 0.447 to 3.00 µg/kg in rice. Notably, tebuconazole and hexaconazole had consistently high contributions over the years. For adults and children, the average daily doses (ADDs) were 1.32 × 10-5 and 2.69 × 10-5 mg/kg/day, respectively, in the monitoring area and 4.25 × 10-6 and 6.42 × 10-6 mg/kg/day, respectively, in the control area. In the control area, rice and vegetables were the primary media for exposure to TFs in children and adults, collectively accounting for more than 94% of the total TF exposure. Conversely, indoor dust is identified as the main medium of TF exposure in children residing near the pesticide factory, representing approximately 40% of the total exposure. The risks of noncarcinogenic effects on children and adults in the monitoring area were significantly greater than those in the control area, being approximately ten times greater for children, warranting increased attention. The carcinogenic risk to human health is relatively safe.


Subject(s)
Environmental Exposure , Environmental Monitoring , Fungicides, Industrial , Triazoles , Triazoles/analysis , China , Risk Assessment , Humans , Fungicides, Industrial/analysis , Environmental Exposure/statistics & numerical data , Dust/analysis , Child , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Adult , Air Pollutants/analysis
3.
Anal Sci ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375285

ABSTRACT

Monitoring the changes of food products with easily applicable technique is important for the quality control of the products. Cigar wrapper and filler easily get moldy due to the existence of the native bacterial in the material and the moisture storage/production condition. Herein, we investigate the volatile compounds produced during the culture of tobacco using chromatography-ion mobility spectrometry (GC-IMS). 114 and 112 volatile compounds are determined with GC-IMS for the cultured cigar wrapper and cigar filler, respectively. Detailed fingerprint analysis and principal component analysis identify a series of compounds that can be used for the evaluation of the degree of mold development on cigar wrapper/filler. The results reported in this work may provide useful information for the quality evaluation of food products.

4.
Sensors (Basel) ; 24(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275642

ABSTRACT

When analyzing GPS time series, common mode errors (CME) often obscure the actual crustal movement signals, leading to deviations in the velocity estimates of station coordinates. Therefore, mitigating the impact of CME on station positioning accuracy is crucial to ensuring the precision and reliability of GNSS time series. The current approach to separating CME mainly uses signal filtering methods to decompose the residuals of the observation network into multiple signals, from which the signals corresponding to CME are identified and separated. However, this method overlooks the spatial correlation of the stations. In this paper, we improved the Independent Component Analysis (ICA) method by introducing correlation coefficients as weighting factors, allowing for more accurate emphasis or attenuation of the contributions of the GNSS network's spatial distribution during the ICA process. The results show that the improved Weighted Independent Component Analysis (WICA) method can reduce the root mean square (RMS) of the coordinate time series by an average of 27.96%, 15.23%, and 28.33% in the E, N, and U components, respectively. Compared to the ICA method, considering the spatial distribution correlation of stations, the improved WICA method shows enhancements of 12.53%, 3.70%, and 8.97% in the E, N, and U directions, respectively. This demonstrates the effectiveness of the WICA method in separating CMEs and provides a new algorithmic approach for CME separation methods.

5.
Carbohydr Polym ; 345: 122564, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227103

ABSTRACT

Microcarriers for large-scale cell culture have a broader prospect in cell screening compared with the traditional high cost, low efficiency, and cell damaging methods. However, the equal biological affinity to cells has hindered its application. Therefore, based on the antifouling strategy of zwitterionic polymer, we developed a cell-specific microcarrier (CSMC) for shielding non-target cells and capturing mesenchymal stem cells (MSCs), which has characteristics of high biocompatibility, low background noise and high precision. Briefly, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and glycidyl methacrylate were grafted onto polygalacturonic acid, respectively. The former built a hydration layer through solvation to provide an excellent antifouling surface, while the latter provided active sites for the click reaction with sulfhydryl-modified cell-specific peptides, resulting in rapid immobilization of peptides. This method is applicable to the vast majority of polysaccharide materials. The accurate capture ratio of MSCs by CSMC in a mixed multicellular environment is >95 % and the proliferation rate of MSCs on microcarriers is satisfactory. In summary, this grafting strategy of bioactive components lays a foundation for the application of polysaccharide materials in the biomedical field, and the specific adhesive microcarriers also open up new ideas for the development of stem cell screening as well.


Subject(s)
Mesenchymal Stem Cells , Pectins , Peptides , Mesenchymal Stem Cells/cytology , Pectins/chemistry , Peptides/chemistry , Methacrylates/chemistry , Cell Proliferation/drug effects , Epoxy Compounds/chemistry , Humans , Animals , Biocompatible Materials/chemistry
6.
Front Cell Infect Microbiol ; 14: 1435294, 2024.
Article in English | MEDLINE | ID: mdl-39286815

ABSTRACT

Objectives: We aim to investigate the prevalence of respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) among pediatric patients with acute respiratory tract illness (ARTI) in southern China both pre- and post-COVID-19 pandemic, as well as identify associated risk factors for severe infections. Methods: The study conducted a real-time PCR analysis on hospitalized children with ARTI from 2012 to 2023, specifically targeting RSV, hMPV, and other respiratory pathogens. Additionally, demographic data was collected during this analysis. Results: The prevalence of RSV occurs triennially, and likewise, the temporal pattern of hMPV outbreaks mirrors that of RSV. The peak infection rates of RSV and hMPV occurred during and following the implementation of COVID-19 epidemic prevention and control measures. The incidence of RSV infection exhibited bimodal peaks in 2022, while hMPV demonstrated seasonal peaks during the spring, fall, and winter periods post-COVID-19 pandemic. After the COVID-19 outbreak, there has been an upward trend in the proportion of female patients and patients aged one year and older presenting with ARTI, RSV infections, and hMPV infections. Infant (OR = 4.767, 95%CI: [3.888-5.846], p < 0.0001), presence of co-infection (OR = 0.540, 95%CI: [0.404-0.722], p < 0.0001), and existence of comorbidities (OR = 1.582, 95%CI: [1.285-1.949], p < 0.0001) was the risk ratio for the severity of RSV infection. Children infected with hMPV under the age of 1 year (OR = 0.322, 95%CI: [0.180 - 0.575], p < 0.0001), as well as those with comorbidities (OR = 8.809, 95%CI: [4.493 - 17.272], p < 0.0001), have a higher risk of developing severe illness. Conclusion: The changing epidemiological patterns have the potential to lead to widespread severe outbreaks among children, particularly those with underlying medical conditions who may experience more severe symptoms. Conducting surveillance for pneumoviridae viruses in children is an imperative measure to establish a robust foundation for future epidemic prevention and treatment strategies.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Infant , Female , Male , Child, Preschool , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Retrospective Studies , China/epidemiology , Child , COVID-19/epidemiology , COVID-19/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Prevalence , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Adolescent , Seasons , Infant, Newborn , Incidence , Severity of Illness Index
7.
Adv Mater ; : e2406939, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291877

ABSTRACT

Dual-band electrochromic materials have attracted significant attention due to their ability to independently control sunlight and solar heat. However, these materials generally exhibit notable limitations, and the mechanisms for their dual-band independent regulation remain poorly understood. Here, the visible-NIR-independent regulation capabilities of hexagonal WO3 (h-WO3) are introduced for the first time. A structure-activity relationship that perfectly links the microscopic ion insertion sequence and cavity characteristics to the macroscopic dual-band electrochromic properties is established. The progressive ion intercalation process and the distinctive optical activity of the cavities are keys for enabling h-WO3 to independently modulate "bright," "cool," and "dark" modes. Notably, h-WO3 demonstrates superior dual-band electrochromic performance with a broadband full shielding effect from 550 to 2000 nm, achieving the widest full shielding band in dual-band electrochromic studies. Additionally, h-WO3 shows a high discharge capacity of 270.9 mAh m- 2 at 0.25 A m- 2, and requires only 49.1 and 209.7 mAh m- 2 to complete a full round-trip switch between "bright-cool" and "bright-dark" modes, respectively. The constructed device offers a dynamic temperature control range of up to 10.5 °C and supports a maximum voltage of 2.86 V, underscoring its considerable potential for practical applications and energy efficiency.

9.
Sci Rep ; 14(1): 21318, 2024 09 12.
Article in English | MEDLINE | ID: mdl-39266597

ABSTRACT

The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1ß, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.


Subject(s)
Apoptosis , Influenza A Virus, H1N1 Subtype , Polyethylene Glycols , Influenza A Virus, H1N1 Subtype/drug effects , Animals , Apoptosis/drug effects , Dogs , Madin Darby Canine Kidney Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Inflammation/drug therapy , Antiviral Agents/pharmacology , Selenium/pharmacology , Selenium/chemistry , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Humans , DNA Damage/drug effects
10.
Inflammopharmacology ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305407

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aß(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.

11.
J Colloid Interface Sci ; 678(Pt C): 608-618, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39305628

ABSTRACT

Unstable cathode/electrolyte interphase and severe interfacial side reaction have long been identified as the main cause for the failure of layered oxide cathode during fast charging and long-term cycling for rechargeable sodium-ion batteries. Here, we report a superionic conductor (Na3V2(PO4)3, NVP) bonding surface strategy for O3-type layered NaNi1/3Fe1/3Mn1/3O2 (NFM) cathode to suppress electrolyte corrosion and near-surface structure deconstruction, especially at high operating potential. The strong bonding affinity at the NVP/NFM contact interface stabilizes the crystal structure by inhibiting surface parasitic reactions and transition metal dissolution, thus significantly improving the phase change reversibility at high desodiation state and prolonging the lifespan of NFM cathode. Due to the high-electron-conductivity of NFM, the redox activity of NVP is also enhanced to provide additional capacity. Therefore, benefiting from the fast ion transport kinetics and electrochemical Na+-storage activity of NVP, the composite NFM@NVP electrode displays a high initial coulombic efficiency of 95.5 % at 0.1 C and excellent rate capability (100 mAh g-1 at 20 C) within high cutoff voltage of 4.2 V. The optimized cathode also delivers preeminent cyclic stability with ∼80 % capacity retention after 500 cycles at 2 C. This work sheds light on a facile and universal strategy on improving interphase stability to develop fast-charging and sustainable batteries.

12.
Front Oncol ; 14: 1389468, 2024.
Article in English | MEDLINE | ID: mdl-39267837

ABSTRACT

Leukemia is a malignant tumor with high heterogeneity and a complex evolutionary process. It is difficult to resolve the heterogeneity and clonal evolution of leukemia cells by applying traditional bulk sequencing techniques, thus preventing a deep understanding of the mechanisms of leukemia development and the identification of potential therapeutic targets. However, with the development and application of single-cell sequencing technology, it is now possible to investigate the gene expression profile, mutations, and epigenetic features of leukemia at the single-cell level, thus providing a new perspective for leukemia research. In this article, we review the recent applications and advances of single-cell sequencing technology in leukemia research, discuss its potential for enhancing our understanding of the mechanisms of leukemia development, discovering therapeutic targets and personalized treatment, and provide reference guidelines for the significance of this technology in clinical research.

13.
Anal Chem ; 96(37): 14819-14825, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39235439

ABSTRACT

To achieve high sensitivity detection of dual-component greenhouse gases carbon dioxide and methane simultaneously, a multimechanism synergistic enhanced all-optical photoacoustic spectroscopy gas analyzer is presented. The acoustic resonance of the photoacoustic cell and the mechanical resonance of a fiber-optic cantilever acoustic sensor are used to enhance the photoacoustic signals of the dual-component gas. The optimized multipass beam reflection structure enhances the effective excitation power of the dual-component gas. The highly sensitive detection of carbon dioxide and methane at dual-frequency operating points is realized by dual-channel laser modulation combined with dual-input digital lock-in amplification technology. The Allan-Werle deviation analysis results show that with a 100 s average time, the minimum detection limits of carbon dioxide and methane are 76.5 and 1.9 ppb, respectively. The corresponding normalized noise equivalent absorption (NNEA) coefficients are 3.1 × 10-10 and 2.9 × 10-10 cm-1 W/Hz1/2, respectively.

14.
Am J Stem Cells ; 13(4): 212-221, 2024.
Article in English | MEDLINE | ID: mdl-39308766

ABSTRACT

Sensorineural deafness mainly occurs due to damage to hair cells, and advances in stem cell technology, especially the application of induced pluripotent stem cells (iPSCs) and adult stem cells, provides new possibilities for hair cell regeneration. This review describes the basic knowledge of stem cells and their important applications in regenerative medicine, as well as recent progress in stem cell research in the field of hair cell regeneration, especially the induced differentiation of hair-like cells. At the same time, we also point out the challenges facing current research, including differentiation efficiency, cell stability issues, and treatment safety and long-term efficacy considerations. Finally, we look forward to the direction of future research, and emphasize the importance of the cell differentiation mechanism, simulation of the inner ear microenvironment, safety assessment, and personalized treatment strategies. In conclusion, despite many challenges, stem cell technology has shown great potential in the field of hearing research and is expected to bring revolutionary treatment options for patients with sensorineural hearing loss in the future.

15.
J Agric Food Chem ; 72(38): 20930-20943, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39279192

ABSTRACT

The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.


Subject(s)
Limosilactobacillus reuteri , Lipopolysaccharides , Probiotics , Teichoic Acids , Teichoic Acids/pharmacology , Animals , Mice , Limosilactobacillus reuteri/immunology , Limosilactobacillus reuteri/chemistry , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , Probiotics/pharmacology , Probiotics/administration & dosage , Macrophages/immunology , Macrophages/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Humans , Male , Immunologic Factors/pharmacology , Mice, Inbred C57BL , Female
17.
Food Chem ; 463(Pt 3): 141333, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39340921

ABSTRACT

Various dietary factors in human milk are important nutrients for the formation of the infant gut microbiota (GM). While promoting the growth of the GM, some human milk components that are difficult to absorb and utilize will be broken down by the GM, and converted into nutrients that the baby can use, such as breast milk oligosaccharides-the 'carbon source' for infant GM. This study reveals that nucleotides (NTs), significant non-protein nitrogen sources in human milk, can enhance the abundance of beneficial microbial genera such as g_Bifidobacterium, g_Bacteroides, and g_Blautia in in vitro fecal fermentation fluids of infants at low doses (2 mg/mL). Conversely, high doses of NTs (20 mg/mL) increased the abundance of g_Escherichia-Shigella. Furthermore, low-dose NTs fermentation broth significantly enhanced the expression of neurodevelopmental marker genes such as Tuj1, Sox2, Dcx, and NeuN in NE-4C neural stem cells, whereas a single NTs digestion broth did not exhibit significant activity. However, in vivo studies using neonatal rats as a model demonstrated that both low-dose NTs fermentation broth and NTs digestive juices promoted behavioral development in neonatal rats (PND 20) and neuron maturation in the prefrontal cortex and hippocampus. Non-targeted metabolomics results indicate that low-dose dietary NTs promote the production of certain neuroregulatory metabolites in infant fecal fermentation, such as uridine, L-tyrosine, L-glutamic acid, and succinic acid. These findings suggest that NTs may serve as an important "nitrogen source" during GM formation in early life and have a dose effect in driving the development of the microbiota-gut-brain axis in early life.

18.
Plants (Basel) ; 13(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39339627

ABSTRACT

The composition and distribution of storage substances in rice endosperm directly affect grain quality. A floury endosperm mutant, wcr (white-core rice), was identified, exhibiting a loose arrangement of starch granules with a floury opaque appearance in the inner layer of mature grains, resulting in reduced grain weight. The total starch and amylose content remained unchanged, but the levels of the four component proteins in the mutant brown rice significantly decreased. Additionally, the milled rice (inner endosperm) showed a significant decrease in total starch and amylose content, accompanied by a nearly threefold increase in albumin content. The swelling capacity of mutant starch was reduced, and its chain length distribution was altered. The target gene was mapped on chromosome 5 within a 65 kb region. A frameshift mutation occurred due to an insertion of an extra C base in the second exon of the cyOsPPDKB gene, which encodes pyruvate phosphate dikinase. Expression analysis revealed that wcr not only affected genes involved in starch metabolism but also downregulated expression levels of genes associated with storage protein synthesis. Overall, wcr plays a crucial role as a regulator factor influencing protein synthesis and starch metabolism in rice grains.

19.
Front Pediatr ; 12: 1423556, 2024.
Article in English | MEDLINE | ID: mdl-39346637

ABSTRACT

Objective: This study aimed to explore the combination effects of prenatal exposure to environment tobacco smoke (ETS) and nutrients supplement during pregnancy on childhood obesity in preschoolers. Methods: A cross-sectional study was conducted with 58,814 child-mother dyads from 235 kindergartens in Longhua District of Shenzhen, China in 2021. A self-administered structured questionnaire was completed by mothers to collect socio-demographic characteristics, prenatal ETS exposure, and nutrients supplement in pregnancy, and preschoolers' heights and weights were measured at the same time. After controlling for potential confounding variables, logistic regression models and cross-analyses were used to examine the independent and combination effects of maternal prenatal ETS exposure and nutrients supplementation during pregnancy on obesity in preschool children. Results: The results of our study showed that prenatal ETS exposure increased the risk of childhood obesity (AOR = 1.22, 95% CI = 1.11-1.34) in preschoolers. In addition, risk of childhood obesity was significantly higher when mothers didn't take supplements of multivitamins (AOR = 1.12, 95% CI = 1.05-1.20), folic acid (AOR = 1.23, 95% CI = 1.10-1.37) and iron (AOR = 1.11, 95% CI = 1.04-1.19) during pregnancy. The cross-over analysis showed that the combination of prenatal ETS exposure with mothers taking no multivitamins (AOR = 1.40, 95% CI = 1.21-1.62), no folic acid (AOR = 1.55, 95% CI = 1.12-2.14) and no iron (AOR = 1.38, 95% CI = 1.19-1.59) during pregnancy also increased the risk of obesity among Chinese preschoolers. We also discovered additive interactive effects between prenatal ETS exposure and no maternal multivitamin, folic acid and iron supplementation in pregnancy on the risk of obesity in preschoolers. Conclusion: The combination of prenatal exposure to ETS with no supplementation of these nutrients might jointly increase the risk of childhood obesity. Public health interventions are needed to reduce prenatal exposure to ETS and to encourage mothers to take appropriate multivitamin, folic acid and iron supplements during pregnancy.

20.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39255373

ABSTRACT

Heterotrophic nitrification remains a mystery for decades. It has been commonly hypothesized that heterotrophic nitrifiers oxidize ammonia to hydroxylamine and then to nitrite in a way similar to autotrophic AOA and AOB. Recently, heterotrophic nitrifiers from Alcaligenes were found to oxidize ammonia to hydroxylamine and then to N2 ("dirammox", direct ammonia oxidation) by the gene cluster dnfABC with a yet-to-be-reported mechanism. The role of a potential glutamine amidotransferase DnfC clues the heterotrophic ammonia oxidation might involving in glutamine. Here, we found Alcaligenes faecalis JQ135 could oxidize amino acids besides ammonia. We discovered that glutamine is an intermediate of the dirammox pathway and the glutamine synthetase gene glnA is essential for both A. faecalis JQ135 and the Escherichia coli cells harboring dnfABC gene cluster to oxidize amino acids and ammonia. Our study expands understanding of heterotrophic nitrifiers and challenges the classical paradigm of heterotrophic nitrification.


Subject(s)
Alcaligenes faecalis , Ammonia , Heterotrophic Processes , Multigene Family , Nitrification , Nitrogen , Oxidation-Reduction , Alcaligenes faecalis/metabolism , Alcaligenes faecalis/genetics , Ammonia/metabolism , Nitrogen/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nitrites/metabolism , Glutamine/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL