Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.984
1.
Chin Herb Med ; 16(2): 239-247, 2024 Apr.
Article En | MEDLINE | ID: mdl-38706823

Constipation is common in the diseases of the digestive system in clinics. With the change in diet structure and the increase in life pressure, the prevalence rate increases year by year. In traditional Chinese medicine (TCM), the location of the disease of constipation is in the large intestine, which is related to the dysfunction of lung, spleen, liver, kidney and other viscera. Its pathogenesis is conductive dysfunction of large intestine. Based on the theory, Shouhui Tongbian Capsule (SHTB) is composed of eight traditional Chinese medicines, including Polygoni multiflori Radix (Heshouwu in Chinese), Aloe (Luhui in Chinese), Cassiae Semen (Juemingzi in Chinese), Ginseng Radix et Rhizoma (Renshen in Chinese), Lycii Fructus (Gouqizi in Chinese), Asini Corii Colla (Ejiao in Chinese), Aurantii Fructus Immaturus (Zhishi in Chinese), and Atractylodis Macrocephalae Rhizoma (Baizhu in Chinese), which could help to release excessive turbid, and nourishing yin and supplementing qi in the treatment. This study has been carried out to review the latest advances of SHTB in the treatment of constipation. The results showed that significant effect of SHTB was found in the treatment of constipation, such as functional constipation, and constipation associated with tumor chemotherapy, colitis, type 2 diabetes and chronic cardiac failure. Besides, obvious adverse reactions were not observed. SHTB could effectively treat five types of constipation, provide direction for the future exploration of SHTB in the treatment of other types of constipation.

2.
J Mol Med (Berl) ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727748

Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.

3.
Biomed Pharmacother ; 175: 116706, 2024 May 06.
Article En | MEDLINE | ID: mdl-38713944

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.

4.
Cell Transplant ; 33: 9636897241244943, 2024.
Article En | MEDLINE | ID: mdl-38695366

Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.


Cell Differentiation , Hedgehog Proteins , Mesenchymal Stem Cells , Signal Transduction , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hedgehog Proteins/metabolism , Humans , Cell Differentiation/physiology , Animals , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
5.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806818

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Claudins , Endothelial Cells , Lung , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/physiology , Lung/metabolism , Lung/virology , Lung/pathology , Lung/blood supply , Endothelial Cells/metabolism , Endothelial Cells/virology , Claudins/metabolism , Claudins/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Claudin-4/metabolism , Claudin-4/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Endothelium, Vascular/pathology , Cells, Cultured , Capillary Permeability , Acute Lung Injury/metabolism , Acute Lung Injury/virology , Acute Lung Injury/pathology , Cytokines/metabolism
6.
J Vis Exp ; (207)2024 May 10.
Article En | MEDLINE | ID: mdl-38801268

Non-small cell lung cancer (NSCLC) is a highly lethal disease with a complex and heterogeneous tumor microenvironment. Currently, common animal models based on subcutaneous inoculation of cancer cell suspensions do not recapitulate the tumor microenvironment in NSCLC. Herein we describe a murine orthotopic lung cancer xenograft model that employs the intrapulmonary inoculation of three-dimensional multicellular spheroids (MCS). Specifically, fluorescent human NSCLC cells (A549-iRFP) were cultured in low-attachment 96-well microplates with collagen for 3 weeks to form MCS, which were then inoculated intercostally into the left lung of athymic nude mice to establish the orthotopic lung cancer model. Compared with the original A549 cell line, MCS of the A549-iRFP cell line responded similarly to anticancer drugs. The long-wavelength fluorescent signal of the A549-iRFP cells correlated strongly with common markers of cancer cell growth, including spheroid volume, cell viability, and cellular protein level, thus allowing dynamic monitoring of the cancer growth in vivo by fluorescent imaging. After inoculation into mice, the A549-iRFP MCS xenograft reliably progressed through phases closely resembling the clinical stages of NSCLC, including the expansion of the primary tumor, the emergence of neighboring secondary tumors, and the metastases of cancer cells to the contralateral right lung and remote organs. Moreover, the model responded to the benchmark antilung cancer drug, cisplatin with the anticipated toxicity and slower cancer progression. Therefore, this murine orthotopic xenograft model of NSCLC would serve as a platform to recapitulate the disease's progression and facilitate the development of potential anticancer drugs.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice, Nude , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Humans , Mice , Xenograft Model Antitumor Assays/methods , Disease Progression , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Disease Models, Animal , A549 Cells , Neoplasm Transplantation
7.
J Contemp Brachytherapy ; 16(2): 121-127, 2024 Apr.
Article En | MEDLINE | ID: mdl-38808212

Purpose: Few studies have focused on the management of inoperable ampullary carcinoma (AC), and patients with jaundice suffer from biliary stents replacement frequently. Iodine-125 (125I) brachytherapy has been used in the treatment of malignant tumors owing to its curative effect, minimal surgical trauma, and tolerable complications. The aim of the study was to investigate the role of 125I seed implantation in patients with unresectable ampullary carcinoma after relief of obstructive jaundice. Material and methods: A total of 44 patients with obstructive jaundice resulting from unresectable ampullary carcinoma from January 1, 2010 to October 31, 2020 were enrolled in the study. Eleven patients underwent implantation of 125I seeds under endoscopic ultrasound (EUS) after receiving biliary stent placement via endoscopic retrograde cholangiopancreatography (ERCP) (treatment group), and 33 patients received a stent alone via ERCP (control group). Cox regression model was applied in this single-center retrospective comparison study. Results: The median maximum intervention interval for biliary obstruction was 381 days (interquartile range [IQR]: 204-419 days) in the treatment group and 175 days (IQR: 126-274 days) in the control group (p < 0.05). Stent occlusion rates at 90 and 180 days in the control group were 12.9% and 51.6%, respectively. No stent occlusion occurred in the treatment group. Patients in the treatment group obtained longer survival time (median, 26 vs. 13 months; p < 0.01) and prolonged duodenal obstruction (median, 20.5 vs. 11 months; p < 0.05). No brachytherapy-related grade 3 or 4 adverse events were observed. Conclusions: Longer intervention interval for biliary obstruction and survival as well as better stent patency and prolonged time to duodenal obstruction could be achieved by implanting 125I seeds combined with biliary stent in patients with unresectable ampullary cancer.

8.
J Virol ; : e0060624, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809020

Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.

9.
Langmuir ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38781129

The exceptional hydrophobicity and antifouling properties of polydimethylsiloxane (PDMS) composites have attracted extensive interest as a result of low surface energy. However, PDMS composites are hardly bound by common primers, greatly limiting their practical applications. To address this issue, an EPMS/VTMS (EV) primer synthesized by hydrolytic polycondensation of 3-[(2,3)-epoxypropoxypropyl]methyldiethoxysilane (EPMS) and vinyltrimethoxysilane (VTMS) in acidic conditions is proposed. Interestingly, the EV primer exhibits exceptional reactivity, self-healing capabilities, and strong adhesion to various substrates, including metals, plastics, and glass. The bonding aluminum plates are easily debonded by immersion in water without any residue left. Subsequently, the EV primer has been applied to the interface between silicone leather and the PDMS composite. Results show that the bonding strength for the silicone leather coated with the EV/PDMS composite is 16 times higher than that of the silicone leather modified with the PDMS composite. Meanwhile, the modified silicone leather exhibits impressive antifouling performance, including aqueous and oily stains, appreciable breathability, and excellent wear resistance, even if suffering from 20 000 cycles of abrasion. These excellent advantages for the modified silicone leather should be attributable to the synergistic effect of the EV primer and the PDMS composite. These findings pave the way to develop an ecofriendly debonding primer for PDMS composites, greatly facilitating applications of silicone leather.

10.
Mol Neurobiol ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767837

Cerebral ischemia-reperfusion injury produces excessive reactive oxygen and nitrogen species, including superoxide, nitric oxide, and peroxynitrite (ONOO-). We recently developed a new ONOO--triggered metal-free carbon monoxide donor (PCOD585), exhibiting a notable neuroprotective outcome on the rat middle cerebral artery occlusion model and rendering an exciting intervention opportunity toward ischemia-induced brain injuries. However, its therapeutic mechanism still needs to be addressed. In the pharmacological study, we found PCOD585 inhibited neuronal Bcl2/Bax/caspase-3 apoptosis pathway in the peri-infarcted area of stroke by scavenging ONOO-. ONOO- scavenging further led to decreased Acyl-CoA synthetase long-chain family member 4 and increased glutathione peroxidase 4, to minimize lipoperoxidation. Additionally, the carbon monoxide release upon the ONOO- reaction with PCOD585 further inhibited the neuronal Iron-dependent ferroptosis associated with ischemia-reperfusion. Such a synergistic neuroprotective mechanism of PCOD585 yields as potent a neuroprotective effect as Edaravone. Additionally, PCOD585 penetrates the blood-brain barrier and reduces the degradation of zonula occludens-1 by inhibiting matrix metalloproteinase-9, thereby protecting the integrity of the blood-brain barrier. Our study provides a new perspective for developing multi-functional compounds to treat ischemic stroke.

11.
Food Chem ; 453: 139633, 2024 May 11.
Article En | MEDLINE | ID: mdl-38781896

Smilax glabra Roxb. (SGR) is known for its high nutritional and therapeutic value. However, the frequent appearance of counterfeit products causes confusion and inconsistent quality among SGR varieties. Herein, this study collected the proportion of SGR adulteration and used high-performance liquid chromatography (HPLC) to measure the astilbin content of SGR. Then Fourier-transform near-infrared (FT-NIR) technology, combined with multivariate intelligent algorithms, was used to establish partial least squares regression quantitative models for detecting SGR adulteration and measuring astilbin content, respectively. The method conducted a quantitative analysis of dual indicators through single-spectrum data acquisition (QADS) to comprehensively evaluate the authenticity and superiority of SGR. The coefficients of determination (R2) for both the calibration and prediction sets exceeded 0.96, which successfully leverages FT-NIR combined with multivariate intelligent algorithms to considerably enhance the accuracy and reliability of quantitative models. Overall, this research holds substantial value in the comprehensive quality evaluation in functional health foods.

12.
Neurosci Lett ; 833: 137827, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777104

OBJECTIVE: SET domain-containing protein 1A (SETD1A) histone lysine N-methyltransferase may serve as a biomarker for the auxiliary diagnosis and treatment assessment of schizophrenia (SCZ). The aim of this study was to compare serum levels of SETD1A protein between patients with SCZ and health controls. METHODS: Patients with SCZ and health controls were recruited from the Sixth Hospital of Changchun and the 'Survey on Chronic Diseases and Risk Factors among Adults in Jilin Province', respectively. The quantifications of lysine N-methyltransferase in peripheral serum were conducted by the ELISA method, and data was analyzed using the R software. RESULTS: Forty patients with SCZ (mean age: 33.97 ± 5.99 years) and forty healthy controls (mean age: 39.07 ± 4.62 years) were included. There was significantly lower concentration of SETD1A protein in the SCZ group compared with the control group (P < 0.001). This significant difference still exists after stratification by sex (P < 0.05). CONCLUSION: Our study demonstrates that decreased levels of serum SETD1A protein may be utilized as a possible peripheral biomarker for schizophrenia.

13.
Comput Struct Biotechnol J ; 23: 1705-1714, 2024 Dec.
Article En | MEDLINE | ID: mdl-38689719

Camelids produce both conventional tetrameric antibodies (Abs) and dimeric heavy-chain antibodies (HCAbs). Although B cells that generate these two types of Abs exhibit distinct B cell receptors (BCRs), whether these two B cell populations differ in their phenotypes and developmental processes remains unclear. Here, we performed single-cell 5' RNA profiling of peripheral blood mononuclear cell samples from Bactrian camels before and after immunization. We characterized the functional subtypes and differentiation trajectories of circulating B cells in camels, and reconstructed single-cell BCR sequences. We found that in contrast to humans, the proportion of T-bet+ B cells was high among camelid peripheral B cells. Several marker genes of human B cell subtypes, including CD27 and IGHD, were expressed at low levels in the corresponding camel B cell subtypes. Camelid B cells expressing variable genes of HACbs (VHH) were widely present in various functional subtypes and showed highly overlapping differentiation trajectories with B cells expressing variable genes of conventional Abs (VH). After immunization, the transcriptional changes in VHH+ and VH+ B cells were largely consistent. Through structure modeling, we identified a variety of scaffold types among the reconstructed VHH sequences. Our study provides insights into the cellular context of HCAb production in camels and lays the foundation for developing single-B cell-based camelid single-domain Ab screening.

14.
Small ; : e2400673, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700057

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

15.
Biomed Pharmacother ; 175: 116421, 2024 May 07.
Article En | MEDLINE | ID: mdl-38719708

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.

16.
Phys Chem Chem Phys ; 26(20): 14980-14990, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739457

In this paper, a new GaSe/ZnS van der Waals heterostructure (vdWH) was constructed and a systematic analysis of the electronic structure, interfacial properties, and transport and photocatalytic capacity of the GaSe/ZnS vdWH was performed by using first-principles calculations. It was found that the heterostructure exhibited excellent photocatalytic performance for water splitting. The direct band gap of the heterostructure calculated using the hybrid HSE06 functional was 2.19 eV, which had a good visible light absorption ability. The electronic structure of the type-II band arrangement effectively reduced the recombination of electron-hole pairs. The heterostructure also showed excellent transport ability, and the carrier mobility of electrons and holes along different directions was greatly improved. Additionally, as the electric field strength increased, the band gap width of the GaSe/ZnS vdWH narrowed and the heterostructure characteristics transitioned from semiconductor to metal properties, which were attributed to the appearance of near-free electronic (NFE) states induced by the strong electric field. Meanwhile, the optical absorption capacity of the heterostructure was greatly improved compared to the ZnS monolayer, reaching 1.44 × 105 cm-1 at an incident photon energy of 8.65 eV. Therefore, the GaSe/ZnS vdWH was proved to be an excellent photocatalytic material for water splitting in the present study.

17.
Environ Res ; 253: 119154, 2024 May 15.
Article En | MEDLINE | ID: mdl-38754616

Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.

18.
Microorganisms ; 12(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38792770

In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.

19.
ACS Appl Bio Mater ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38790078

Hyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy. We first prepared various AC@PM formulations self-assembled from mPEG-PLA and mPEG-PLA-PEG block copolymers using a dialysis method and evaluated the physicochemical properties in combination with experiment skills and dissipative particle dynamics (DPD) simulations. Then, we encapsulated the AC@PMs into the PVA MN patch using a micromold filling method, followed by characterizing the performances, especially the structural stability, mechanical performance, and biosafety. After conducting in vivo experiments using a hyperlipidemic rat model, our findings revealed that the hybrid microneedle-mediated administration exhibited superior therapeutic efficacy when compared to oral delivery methods. In summary, we have successfully developed a hybrid microneedle (MN) patch system that holds promising potential for the efficient transdermal delivery of hydrophobic drugs.

20.
Adv Healthc Mater ; : e2400945, 2024 May 24.
Article En | MEDLINE | ID: mdl-38794820

Unravelling the mechanisms for the immunosuppressive tumor microenvironment and developing corresponding therapeutic strategies are of great importance to improve the cancer immunotherapy. In this study, we have revealed that there are abundant senescent cells accumulated in the colon cancer tissue, which contributes greatly to the immunosuppressive microenvironment. Oral delivery of Dasatinib and Quercetin (D+Q) eliminates the senescent cells with compromised efficiency due to the poor tumor penetration and short half-life. To improve the efficacy of senescent cell clearance, we have developed an extracellular vesicle (EV)-based senolytic strategy. The engineered senolytic EVs have anti-GPNMB (a senescent cell surface marker) displayed on the surface and D+Q loaded on the membrane. In a syngeneic mouse model, senolytic EVs efficiently and selectively eradicate the senescent cells and in turn unleashes the antitumor immunity. With the antitumor immunity boosted, cancer growth is inhibited and the survival is prolonged. In summary, we here have illuminated that senescent cells contribute to the immunosuppressive microenvironment in colon cancer and proposed a novel strategy to conquer the problem by EV-based senolytics. This article is protected by copyright. All rights reserved.

...