Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Histopathology ; 84(6): 915-923, 2024 May.
Article in English | MEDLINE | ID: mdl-38433289

ABSTRACT

A growing body of research supports stromal tumour-infiltrating lymphocyte (TIL) density in breast cancer to be a robust prognostic and predicive biomarker. The gold standard for stromal TIL density quantitation in breast cancer is pathologist visual assessment using haematoxylin and eosin-stained slides. Artificial intelligence/machine-learning algorithms are in development to automate the stromal TIL scoring process, and must be validated against a reference standard such as pathologist visual assessment. Visual TIL assessment may suffer from significant interobserver variability. To improve interobserver agreement, regulatory science experts at the US Food and Drug Administration partnered with academic pathologists internationally to create a freely available online continuing medical education (CME) course to train pathologists in assessing breast cancer stromal TILs using an interactive format with expert commentary. Here we describe and provide a user guide to this CME course, whose content was designed to improve pathologist accuracy in scoring breast cancer TILs. We also suggest subsequent steps to translate knowledge into clinical practice with proficiency testing.


Subject(s)
Breast Neoplasms , Humans , Female , Pathologists , Lymphocytes, Tumor-Infiltrating , Artificial Intelligence , Prognosis
2.
IEEE Trans Med Imaging ; 43(7): 2599-2609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38381642

ABSTRACT

Methods for unsupervised domain adaptation (UDA) help to improve the performance of deep neural networks on unseen domains without any labeled data. Especially in medical disciplines such as histopathology, this is crucial since large datasets with detailed annotations are scarce. While the majority of existing UDA methods focus on the adaptation from a labeled source to a single unlabeled target domain, many real-world applications with a long life cycle involve more than one target domain. Thus, the ability to sequentially adapt to multiple target domains becomes essential. In settings where the data from previously seen domains cannot be stored, e.g., due to data protection regulations, the above becomes a challenging continual learning problem. To this end, we propose to use generative feature-driven image replay in conjunction with a dual-purpose discriminator that not only enables the generation of images with realistic features for replay, but also promotes feature alignment during domain adaptation. We evaluate our approach extensively on a sequence of three histopathological datasets for tissue-type classification, achieving state-of-the-art results. We present detailed ablation experiments studying our proposed method components and demonstrate a possible use-case of our continual UDA method for an unsupervised patch-based segmentation task given high-resolution tissue images. Our code is available at: https://github.com/histocartography/multi-scale-feature-alignment.


Subject(s)
Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Humans , Algorithms , Unsupervised Machine Learning , Deep Learning , Animals , Databases, Factual , Neural Networks, Computer
3.
Med Image Anal ; 93: 103070, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38176354

ABSTRACT

We propose DiRL, a Diversity-inducing Representation Learning technique for histopathology imaging. Self-supervised learning (SSL) techniques, such as contrastive and non-contrastive approaches, have been shown to learn rich and effective representations of digitized tissue samples with limited pathologist supervision. Our analysis of vanilla SSL-pretrained models' attention distribution reveals an insightful observation: sparsity in attention, i.e, models tends to localize most of their attention to some prominent patterns in the image. Although attention sparsity can be beneficial in natural images due to these prominent patterns being the object of interest itself, this can be sub-optimal in digital pathology; this is because, unlike natural images, digital pathology scans are not object-centric, but rather a complex phenotype of various spatially intermixed biological components. Inadequate diversification of attention in these complex images could result in crucial information loss. To address this, we leverage cell segmentation to densely extract multiple histopathology-specific representations, and then propose a prior-guided dense pretext task, designed to match the multiple corresponding representations between the views. Through this, the model learns to attend to various components more closely and evenly, thus inducing adequate diversification in attention for capturing context-rich representations. Through quantitative and qualitative analysis on multiple tasks across cancer types, we demonstrate the efficacy of our method and observe that the attention is more globally distributed.


Subject(s)
Image Processing, Computer-Assisted , Machine Learning , Pathology , Humans , Phenotype , Pathology/methods
4.
NPJ Precis Oncol ; 8(1): 9, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200147

ABSTRACT

Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology.

5.
J Pathol ; 262(3): 271-288, 2024 03.
Article in English | MEDLINE | ID: mdl-38230434

ABSTRACT

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Humans , Female , Biomarkers, Tumor/genetics , Prognosis , Phenotype , United Kingdom , Tumor Microenvironment
6.
Article in English | MEDLINE | ID: mdl-38741683

ABSTRACT

In digital pathology, the spatial context of cells is important for cell classification, cancer diagnosis and prognosis. To model such complex cell context, however, is challenging. Cells form different mixtures, lineages, clusters and holes. To model such structural patterns in a learnable fashion, we introduce several mathematical tools from spatial statistics and topological data analysis. We incorporate such structural descriptors into a deep generative model as both conditional inputs and a differentiable loss. This way, we are able to generate high quality multi-class cell layouts for the first time. We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification.

7.
Proc Mach Learn Res ; 227: 74-94, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38817539

ABSTRACT

Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.

8.
Proc IEEE Int Conf Comput Vis ; 2021: 3985-3994, 2021 Oct.
Article in English | MEDLINE | ID: mdl-38783989

ABSTRACT

In digital pathology, both detection and classification of cells are important for automatic diagnostic and prognostic tasks. Classifying cells into subtypes, such as tumor cells, lymphocytes or stromal cells is particularly challenging. Existing methods focus on morphological appearance of individual cells, whereas in practice pathologists often infer cell classes through their spatial context. In this paper, we propose a novel method for both detection and classification that explicitly incorporates spatial contextual information. We use the spatial statistical function to describe local density in both a multi-class and a multi-scale manner. Through representation learning and deep clustering techniques, we learn advanced cell representation with both appearance and spatial context. On various benchmarks, our method achieves better performance than state-of-the-arts, especially on the classification task. We also create a new dataset for multi-class cell detection and classification in breast cancer and we make both our code and data publicly available.

SELECTION OF CITATIONS
SEARCH DETAIL