Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Nat Commun ; 15(1): 7239, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174524

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.


Subject(s)
Cell Division , Induced Pluripotent Stem Cells , Neural Stem Cells , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Humans , Animals , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mice , Neurogenesis/genetics , Male , Female , Membrane Proteins/metabolism , Membrane Proteins/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Disease Models, Animal , Cell Polarity
2.
EBioMedicine ; 107: 105297, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39191170

ABSTRACT

BACKGROUND: NOTCH3 encodes a transmembrane receptor critical for vascular smooth muscle cell function. NOTCH3 variants are the leading cause of hereditary cerebral small vessel disease (SVD). While monoallelic cysteine-involving missense variants in NOTCH3 are well-studied in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), patients with biallelic variants in NOTCH3 are extremely rare and not well characterised. METHODS: In this study, we present clinical and genetic data from 25 patients with biallelic NOTCH3 variants and conduct a literature review of another 25 cases (50 patients in total). Brain magnetic resonance imaging (MRI) were analysed by expert neuroradiologists to better understand the phenotype associated with biallelic NOTCH3 variants. FINDINGS: Our systematic analyses verified distinct genotype-phenotype correlations for the two types of biallelic variants in NOTCH3. Biallelic loss-of-function variants (26 patients) lead to a neurodevelopmental disorder characterised by spasticity, childhood-onset stroke, and periatrial white matter volume loss resembling periventricular leukomalacia. Conversely, patients with biallelic cysteine-involving missense variants (24 patients) fall within CADASIL spectrum phenotype with early adulthood onset stroke, dementia, and deep white matter lesions without significant volume loss. White matter lesion volume is comparable between patients with biallelic cysteine-involving missense variants and individuals with CADASIL. Notably, monoallelic carriers of loss-of-function variants are predominantly asymptomatic, with only a few cases reporting nonspecific headaches. INTERPRETATION: We propose a NOTCH3-SVD classification depending on dosage and variant type. This study not only expands our knowledge of biallelic NOTCH3 variants but also provides valuable insight into the underlying mechanisms of the disease, contributing to a more comprehensive understanding of NOTCH3-related SVD. FUNDING: The Wellcome Trust, the MRC.

4.
J Neurol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031193

ABSTRACT

The CSF1R gene, located on chromosome 5, encodes a 108 kDa protein and plays a critical role in regulating myeloid cell function. Mutations in CSF1R have been identified as a cause of a rare white matter disease called adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP, also known as CSF1R-related leukoencephalopathy), characterized by progressive neurological dysfunction. This study aimed to broaden the genetic basis of ALSP by identifying novel CSF1R variants in patients with characteristic clinical and imaging features of ALSP. Genetic analysis was performed through whole-exome sequencing or panel analysis for leukodystrophy genes. Variant annotation and classification were conducted using computational tools, and the identified variants were categorized following the recommendations of the American College of Medical Genetics and Genomics (ACMG). To assess the evolutionary conservation of the novel variants within the CSF1R protein, amino acid sequences were compared across different species. The study identified six previously unreported CSF1R variants (c.2384G>T, c.2133_2919del, c.1837G>A, c.2304C>A, c.2517G>T, c.2642C>T) in seven patients with ALSP, contributing to the expanding knowledge of the genetic diversity underlying this rare disease. The analysis revealed considerable genetic and clinical heterogeneity among these patients. The findings emphasize the need for a comprehensive understanding of the genetic basis of rare diseases like ALSP and underscored the importance of genetic testing, even in cases with no family history of the disease. The study's contribution to the growing spectrum of ALSP genetics and phenotypes enhances our knowledge of this condition, which can be crucial for both diagnosis and potential future treatments.

5.
Mult Scler J Exp Transl Clin ; 10(3): 20552173241263491, 2024.
Article in English | MEDLINE | ID: mdl-39072298

ABSTRACT

Background: Multiple sclerosis (MS) shares clinical/radiological features with several monogenic diseases that can mimic MS. Objective: We aimed to determine if exome sequencing can identify monogenic diseases in patients diagnosed with MS according to the McDonald criteria thus uncovering them as being misdiagnosed. Methods: We performed whole exome sequencing in a cohort of 278 patients with MS, clinically or radiologically isolated syndrome without cerebrospinal fluid-specific oligoclonal bands (CSF-OCBs) (n = 228), a positive family history of MS (n = 44), or both (n = 6), thereby focusing on individuals potentially more likely to have underlying monogenic conditions mimicking MS. We prioritized 495 genes associated with monogenic diseases sharing features with MS. Results: A disease-causing variant in NOTCH3 was identified in one patient without CSF-OCBs, no spinal lesions, with non-response to immunotherapy, and a family history of dementia, thereby converting the diagnosis to cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Moreover, 18 patients (6.5% of total) carried variants of unclear significance. Conclusion: Monogenic diseases being misdiagnosed as MS seem rare in patients diagnosed with MS according to the McDonald criteria, even in CSF-OCB negative cases. The detected pathogenic NOTCH3 variant emphasizes CADASIL as a rare differential diagnosis and highlights the relevance of genetic testing in selected MS cases with atypical presentations.

6.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
7.
Eur J Hum Genet ; 32(8): 1014-1021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839988

ABSTRACT

In the past decade, next-generation sequencing (NGS) has revolutionised genetic diagnostics for rare neurological disorders (RND). However, the lack of standardised technical, interpretative, and reporting standards poses a challenge for ensuring consistent and high-quality diagnostics globally. To address this, the European Reference Network for Rare Neurological Diseases (ERN-RND) collaborated with the European Molecular Genetics Quality Network (EMQN) to establish an external quality assessment scheme for NGS-based diagnostics in RNDs. The scheme, initiated in 2021 with a pilot involving 29 labs and followed by a second round in 2022 with 42 labs, aimed to evaluate the performance of laboratories in genetic testing for RNDs. Each participating lab analysed genetic data from three hypothetical cases, assessing genotyping, interpretation, and clerical accuracy. Despite a majority of labs using exome or genome sequencing, there was considerable variability in gene content, sequencing quality, adherence to standards, and clinical guidance provision. Results showed that while most labs provided correct molecular diagnoses, there was significant variability in reporting technical quality, adherence to interpretation standards, reporting strategies, and clinical commentary. Notably, some labs returned results with the potential for adverse medical outcomes. This underscores the need for further harmonisation, guideline development, and external quality assessment in the evolving landscape of genomic diagnostics for RNDs. Overall, the experience with the scheme highlighted the generally good quality of participating labs but emphasised the imperative for ongoing improvement in data analysis, interpretation, and reporting to enhance patient safety.


Subject(s)
Genetic Testing , Nervous System Diseases , Rare Diseases , Humans , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/diagnosis , Europe , Genetic Testing/standards , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/standards , High-Throughput Nucleotide Sequencing/methods , Quality Assurance, Health Care/standards
8.
Clin Genet ; 106(3): 347-353, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38774940

ABSTRACT

Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.


Subject(s)
Dwarfism , Exome Sequencing , Mutation , Pedigree , Humans , Female , Male , Dwarfism/genetics , Child , Pakistan/epidemiology , Genetic Predisposition to Disease , Homozygote , Phenotype , Syndrome , Child, Preschool , Adolescent , Genetic Association Studies
9.
Sci Rep ; 14(1): 10551, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719929

ABSTRACT

Our purpose was to elucidate the genotype and ophthalmological and audiological phenotype in TUBB4B-associated inherited retinal dystrophy (IRD) and sensorineural hearing loss (SNHL), and to model the effects of all possible amino acid substitutions at the hotspot codons Arg390 and Arg391. Six patients from five families with heterozygous missense variants in TUBB4B were included in this observational study. Ophthalmological testing included best-corrected visual acuity, fundus examination, optical coherence tomography, fundus autofluorescence imaging, and full-field electroretinography (ERG). Audiological examination included pure-tone and speech audiometry in adult patients and auditory brainstem response testing in a child. Genetic testing was performed by disease gene panel analysis based on genome sequencing. The molecular consequences of the substitutions of residues 390 and 391 on TUBB4B and its interaction with α-tubulin were predicted in silico on its three-dimensional structure obtained by homology modelling. Two independent patients had amino acid exchanges at position 391 (p.(Arg391His) or p.(Arg391Cys)) of the TUBB4B protein. Both had a distinct IRD phenotype with peripheral round yellowish lesions with pigmented spots and mild or moderate SNHL, respectively. Yet the phenotype was milder with a sectorial pattern of bone spicules in one patient, likely due to a genetically confirmed mosaicism for p.(Arg391His). Three patients were heterozygous for an amino acid exchange at position 390 (p.(Arg390Gln) or p.(Arg390Trp)) and presented with another distinct retinal phenotype with well demarcated pericentral retinitis pigmentosa. All showed SNHL ranging from mild to severe. One additional patient showed a variant distinct from codon 390 or 391 (p.(Tyr310His)), and presented with congenital profound hearing loss and reduced responses in ERG. Variants at codon positions 390 and 391 were predicted to decrease the structural stability of TUBB4B and its complex with α-tubulin, as well as the complex affinity. In conclusion, the twofold larger reduction in heterodimer affinity exhibited by Arg391 substitutions suggested an association with the more severe retinal phenotype, compared to the substitution at Arg390.


Subject(s)
Codon , Hearing Loss, Sensorineural , Phenotype , Tubulin , Humans , Female , Tubulin/genetics , Tubulin/chemistry , Male , Adult , Hearing Loss, Sensorineural/genetics , Codon/genetics , Middle Aged , Mutation, Missense , Child , Pedigree , Adolescent , Amino Acid Substitution , Young Adult , Retinitis Pigmentosa/genetics
10.
Neurol Genet ; 10(2): e200146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617198

ABSTRACT

Background and Objectives: Hexokinase 1 (encoded by HK1) catalyzes the first step of glycolysis, the adenosine triphosphate-dependent phosphorylation of glucose to glucose-6-phosphate. Monoallelic HK1 variants causing a neurodevelopmental disorder (NDD) have been reported in 12 individuals. Methods: We investigated clinical phenotypes, brain MRIs, and the CSF of 15 previously unpublished individuals with monoallelic HK1 variants and an NDD phenotype. Results: All individuals had recurrent variants likely causing gain-of-function, representing mutational hot spots. Eight individuals (c.1370C>T) had a developmental and epileptic encephalopathy with infantile onset and virtually no development. Of the other 7 individuals (n = 6: c.1334C>T; n = 1: c.1240G>A), 3 adults showed a biphasic course of disease with a mild static encephalopathy since early childhood and an unanticipated progressive deterioration with, e.g., movement disorder, psychiatric disease, and stroke-like episodes, epilepsy, starting in adulthood. Individuals who clinically presented in the first months of life had (near)-normal initial neuroimaging and severe cerebral atrophy during follow-up. In older children and adults, we noted progressive involvement of basal ganglia including Leigh-like MRI patterns and cerebellar atrophy, with remarkable intraindividual variability. The CSF glucose and the CSF/blood glucose ratio were below the 5th percentile of normal in almost all CSF samples, while blood glucose was unremarkable. This biomarker profile resembles glucose transporter type 1 deficiency syndrome; however, in HK1-related NDD, CSF lactate was significantly increased in all patients resulting in a substantially different biomarker profile. Discussion: Genotype-phenotype correlations appear to exist for HK1 variants and can aid in counseling. A CSF biomarker profile with low glucose, low CSF/blood glucose, and high CSF lactate may point toward monoallelic HK1 variants causing an NDD. This can help in variant interpretation and may aid in understanding the pathomechanism. We hypothesize that progressive intoxication and/or ongoing energy deficiency lead to the clinical phenotypes and progressive neuroimaging findings.

12.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614108

ABSTRACT

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Subject(s)
Parkinson Disease , rab GTP-Binding Proteins , Adult , Aged , Female , Humans , Male , Middle Aged , Canada/epidemiology , Case-Control Studies , Exome Sequencing , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Genotype , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , Tunisia
13.
Nat Genet ; 56(6): 1080-1089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684900

ABSTRACT

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.


Subject(s)
Autophagy , Homeodomain Proteins , Pedigree , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Autophagy/genetics , Trinucleotide Repeat Expansion/genetics , Homeodomain Proteins/genetics , Spinocerebellar Ataxias/genetics , Male , Female , Induced Pluripotent Stem Cells/metabolism
14.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38297832

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Subject(s)
De Lange Syndrome , Intellectual Disability , Humans , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Heterozygote , Intellectual Disability/genetics , Mutation , Phenotype
15.
Brain ; 147(7): 2471-2482, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38386308

ABSTRACT

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.


Subject(s)
Mice, Knockout , Neurodevelopmental Disorders , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Transcription Factors/genetics
16.
medRxiv ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38352438

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

17.
Genes (Basel) ; 15(1)2024 01 22.
Article in English | MEDLINE | ID: mdl-38275617

ABSTRACT

The potential of genome sequencing (GS), which allows detection of almost all types of genetic variation across nearly the entire genome of an individual, greatly expands the possibility for diagnosing genetic disorders. The opportunities provided with this single test are enticing to researchers and clinicians worldwide for human genetic research as well as clinical application. Multiple studies have highlighted the advantages of GS for genetic variant discovery, emphasizing its added value for routine clinical use. We have implemented GS as first-line genetic testing for patients with rare diseases. Here, we report on our experiences in establishing GS as a reliable diagnostic method for almost all types of genetic disorders, from validating diagnostic accuracy of sequencing pipelines to clinical implementation in routine practice.


Subject(s)
Genetic Testing , Genome , Humans , Genetic Testing/methods , Base Sequence , Chromosome Mapping , Whole Genome Sequencing/methods
18.
medRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293014

ABSTRACT

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD. Methods: Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed. Findings: We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase. Interpretation: Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD. Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council.

19.
Eur J Hum Genet ; 32(3): 350-356, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200082

ABSTRACT

Numerous contiguous gene deletion syndromes causing neurodevelopmental disorders have previously been defined using cytogenetics for which only in the current genomic era the disease-causing genes have become elucidated. One such example is deletion at Xq22.2, previously associated with a neurodevelopmental disorder which has more recently been found to be caused by de novo loss-of-function variants in TCEAL1. So far, a single study reported six unrelated individuals with this monogenetic disorder, presenting with syndromic features including developmental delay especially affecting expressive speech, intellectual disability, autistic-like behaviors, hypotonia, gait abnormalities and mild facial dysmorphism, in addition to ocular, gastrointestinal, and immunologic abnormalities. Here we report on four previously undescribed individuals, including two adults, with de novo truncating variants in TCEAL1, identified through trio exome or genome sequencing, further delineating the phenotype of the TCEAL1-related disorder. Whereas overall we identify similar features compared to the original report, we also highlight features in our adult individuals including hyperphagia, obesity, and endocrine abnormalities including hyperinsulinemia, hyperandrogenemia, and polycystic ovarian syndrome. X chromosome inactivation and RNA-seq studies further provide functional insights in the molecular mechanisms. Together this report expands the phenotypic and molecular spectrum of the TCEAL1-related disorder which will be useful for counseling of newly identified individuals and their families.


Subject(s)
Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Adult , Female , Humans , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Autistic Disorder/genetics , Base Sequence , Phenotype , DNA-Binding Proteins/genetics , Transcription Factors/genetics
20.
Mol Genet Genomic Med ; 12(1): e2310, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37902276

ABSTRACT

BACKGROUND: Bi-allelic variants in AFG2B (previously known as SPATA5L1) have recently been associated with a neurodevelopmental disorder with hearing loss and spasticity, as well as isolated hearing loss. We report on a 6 1/2-year-old girl with a history of global developmental delay, subsequent intellectual disability without relevant language acquisition, sensorineural hearing loss, muscular hypotonia and microcephaly. METHODS: We performed trio exome sequencing on the patient and her parents. RESULTS: Trio exome sequencing revealed likely pathogenic compound heterozygous missense variants in AFG2B [c.527G>T, p.(Gly176Val) and c.1313T>C, p.(Leu438Pro)] in the patient. CONCLUSION: Of note, the change c.1313T>C, p.(Leu438Pro) has been observed in a previously published patient as part of a complex disease allele along with a second homozygous missense change, so the exact contribution of the two alterations to this patient's disease had initially remained unclear. Our results support the pathogenic relevance of the c.1313T>C, p.(Leu438Pro) allele while providing detailed insights into the disease manifestation of a further patient.


Subject(s)
Deafness , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Humans , Female , Middle Aged , Microcephaly/genetics , Microcephaly/pathology , Virulence , Neurodevelopmental Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL