Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 756
Filter
1.
Genet Med ; : 101225, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096151

ABSTRACT

PURPOSE: Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort which includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia (CHOP). METHODS: We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG secondary findings, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to impact participant health significantly. To identify and categorize these variants, we employed a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential secondary findings relevant to pediatric participants. RESULTS: We report a distinctive distribution of 1,464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR (41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes.

2.
Front Cell Infect Microbiol ; 14: 1369226, 2024.
Article in English | MEDLINE | ID: mdl-39086605

ABSTRACT

Objective: The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods: Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results: Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion: The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.


Subject(s)
DNA Methylation , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Porphyromonas gingivalis , Animals , Porphyromonas gingivalis/genetics , Mice , Periodontitis/microbiology , Epigenesis, Genetic , Periodontal Diseases/microbiology , Disease Susceptibility , Bacteroidaceae Infections/microbiology , Epigenome
3.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38946956

ABSTRACT

Atopic dermatitis (AD) is a highly heritable and common inflammatory skin condition affecting children and adults worldwide. Multi-ancestry approaches to AD genetic association studies are poised to boost power to detect genetic signal and identify ancestry-specific loci contributing to AD risk. Here, we present a multi-ancestry GWAS meta-analysis of twelve AD cohorts from five ancestral populations totaling 56,146 cases and 602,280 controls. We report 101 genomic loci associated with AD, including 15 loci that have not been previously associated with AD or eczema. Fine-mapping, QTL colocalization, and cell-type enrichment analyses identified genes and cell types implicated in AD pathophysiology. Functional analyses in keratinocytes provide evidence for genes that could play a role in AD through epidermal barrier function. Our study provides new insights into the etiology of AD by harnessing multiple genetic and functional approaches to unveil the mechanisms by which AD-associated variants impact genes and cell types.

4.
Genet Med ; : 101222, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39045790

ABSTRACT

PURPOSE: Hardikar syndrome (HS, MIM #301068) is a female-specific multiple congenital anomaly syndrome characterized by retinopathy, orofacial clefting, aortic coarctation, biliary dysgenesis, genitourinary malformations, and intestinal malrotation. We previously showed that heterozygous nonsense and frameshift variants in MED12 cause HS. The phenotypic spectrum of disease and the mechanism by which MED12 variants cause disease is unknown. We aim to expand the phenotypic and molecular landscape of HS and elucidate the mechanism by which MED12 variants cause disease. METHODS: We assembled and clinically and molecularly characterized a cohort of 11 previously-unreported individuals with HS. We additionally studied the effect of MED12 deficiency on ciliary biology and hedgehog and YAP signaling, pathways implicated in diseases with phenotypic overlap with HS. RESULTS: We report novel phenotypes associated with HS, including cardiomyopathy, arrhythmia, and vascular anomalies and expand the molecular landscape of HS to include splice site variants. We additionally demonstrate that MED12 deficiency causes decreased cell ciliation and impairs hedgehog and YAP signaling. CONCLUSION: Our data support updating HS standard-of-care to include regular cardiac imaging, arrhythmia screening, and vascular imaging. We further propose that dysregulation of ciliogenesis and YAP and hedgehog signaling contributes to the pathogenesis of HS.

5.
Brain Pathol ; : e13291, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054254

ABSTRACT

Hereditary cystatin C amyloid angiopathy (HCCAA) is an Icelandic disease that belongs to a disease class called cerebral amyloid angiopathy, a group of heterogenous diseases presenting with aggregation of amyloid complexes and deposition predominantly in the central nervous system. HCCAA is dominantly inherited, caused by L68Q mutation in the cystatin C gene, leading to aggregation of the cystatin C protein. HCCAA is a very progressive and severe disease, with widespread cerebral and parenchymal cystatin C and collagen IV deposition within the central nervous system (CNS) but also in other organs in the body, for example, in the skin. Most L68Q carriers have clinical symptoms characterized by recurrent hemorrhages and dementia, between the age of 20-30 years. If the carriers survive the first hemorrhage, the frequency and severity of the hemorrhages tend to increase, resulting in death at average of 30 years with mean number of major hemorrhages ranging from 3.2 to 3.9 over a 5-year average life span. The pathogenesis of the disease in carriers is very similar in the CNS and in the skin based on autopsy studies, thus skin biopsies can be used to monitor the progression of the disease by quantifying the cystatin C immunoreactivity. The cystatin C deposition always colocalizes with collagen IV and fibroblasts in the skin are found to be the main cell type responsible for the deposition of both proteins. No therapy is available for this devastating disease.

6.
medRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853886

ABSTRACT

Background: The relationship between ambient air pollution (AAP) exposure and asthma exacerbations is well-established. However, mitigation efforts have yielded mixed results, potentially due to genetic variability in the response to AAP. We hypothesize that common single nucleotide polymorphisms (SNPs) are linked to AAP sensitivity and test this through a Genome Wide Association Study (GWAS). Methods: We selected a cohort of pediatric asthma patients frequently exposed to AAP. Patients experiencing exacerbations immediately following AAP spikes were deemed sensitive. A GWAS compared sensitive versus non-sensitive patients. Findings were validated using data from the All of Us program. Results: Our study included 6,023 pediatric asthma patients. Due to the association between AAP exposure and race, GWAS analysis was feasible only in the African ancestry cohort. Seven risk loci reached genome-wide significance, including four non-intergenic variants. Two variants were validated: rs111970601 associated with sensitivity to CO (odds ratio [OR], 6.58; PL=L1.63L×L10-8; 95% CI, 3.42-12.66) and rs9836522 to PM2.5 sensitivity (OR 0.75; PL=L3,87 ×L10-9; 95% CI, 0.62-0.91). Interpretation: While genetic variants have been previously linked to asthma incidence and AAP exposure, this study is the first to link specific SNPs with AAP-related asthma exacerbations. The identified variants implicate genes with a known role in asthma and established links to AAP. Future research should explore how clinical interventions interact with genetic risk to mitigate the effects of AAP, particularly to enhance health equity for vulnerable populations. What is already known on this topic: The relationship between ambient air pollution (AAP) exposure and asthma exacerbations is well-established. However, efforts to mitigate the impact of AAP on children with asthma have yielded mixed results, potentially due to genetic variability in response to AAP. What this study adds: Using publicly available AAP data, we identify which children with asthma experience exacerbations immediately following spikes in AAP. We then conduct a Genome Wide Association Study (GWAS) comparing these patients with those who have no temporal association between AAP spikes and asthma exacerbations, identifying several Single Nucleotide Polymorphisms (SNPs) significantly associated with AAP sensitivity. How this study might affect research practice or policy: While genetic variants have previously been linked to asthma incidence and AAP exposure, this study is the first to link specific SNPs with AAP-related asthma exacerbations. This creates a framework for identifying children especially at risk when exposed to AAP. These children should be targeted with policy interventions to reduce exposure and may require specific treatments to mitigate the effects of ongoing AAP exposure in the interim.

7.
Arch Dermatol Res ; 316(6): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819581

ABSTRACT

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.


Subject(s)
Antifungal Agents , Carcinoma, Squamous Cell , Cytochrome P-450 CYP2C19 , Skin Neoplasms , Voriconazole , Humans , Voriconazole/adverse effects , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Retrospective Studies , Male , Female , Middle Aged , Antifungal Agents/adverse effects , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/etiology , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19/genetics , Aged , Organ Transplantation/adverse effects , Adult
8.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701189

ABSTRACT

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Subject(s)
B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Multiple Sclerosis , Oxidative Phosphorylation , Animals , Multiple Sclerosis/immunology , Humans , Cytokines/immunology , Cytokines/metabolism , Mice , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Female , Male , Mice, Inbred C57BL , Adult , Adenosine Triphosphate/metabolism , Middle Aged
9.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746128

ABSTRACT

The advent of long-read single-cell transcriptome sequencing (lr-scRNA-Seq) represents a significant leap forward in single-cell genomics. With the recent introduction of R10 flowcells by Oxford Nanopore, we propose that previous computational methods designed to handle high sequencing error rates are no longer relevant, and that the prevailing approach using short reads to compile "barcode space" (candidate barcode list) to de-multiplex long reads are no longer necessary. Instead, computational methods should now shift focus on harnessing the unique benefits of long reads to analyze transcriptome complexity. In this context, we introduce a comprehensive suite of computational methods named Single-Cell Omics for Transcriptome CHaracterization (SCOTCH). Our method is compatible with the single-cell library preparation platform from both 10X Genomics and Parse Biosciences, facilitating the analysis of special cell populations, such as neurons, hepatocytes and developing cardiomyocytes. We specifically re-formulated the transcript mapping problem with a compatibility matrix and addressed the multiple-mapping issue using probabilistic inference, which allows the discovery of novel isoforms as well as the detection of differential isoform usage between cell populations. We evaluated SCOTCH through analysis of real data across different combinations of single-cell libraries and sequencing technologies (10X + Illumina, Parse + Illumina, 10X + Nanopore_R9, 10X + Nanopore_R10, Parse + Nanopore_R10), and showed its ability to infer novel biological insights on cell type-specific isoform expression. These datasets enhance the availability of publicly available data for continued development of computational approaches. In summary, SCOTCH allows extraction of more biological insights from the new advancements in single-cell library construction and sequencing technologies, facilitating the examination of transcriptome complexity at the single-cell level.

10.
Article in English | MEDLINE | ID: mdl-38692308

ABSTRACT

BACKGROUND: Autoimmune cytopenias (AICs) regularly occur in profoundly IgG-deficient patients with common variable immunodeficiency (CVID). The isotypes, antigenic targets, and origin(s) of their disease-causing autoantibodies are unclear. OBJECTIVE: We sought to determine reactivity, clonality, and provenance of AIC-associated IgM autoantibodies in patients with CVID. METHODS: We used glycan arrays, patient erythrocytes, and platelets to determine targets of CVID IgM autoantibodies. Glycan-binding profiles were used to identify autoreactive clones across B-cell subsets, specifically circulating marginal zone (MZ) B cells, for sorting and IGH sequencing. The locations, transcriptomes, and responses of tonsillar MZ B cells to different TH- cell subsets were determined by confocal microscopy, RNA-sequencing, and cocultures, respectively. RESULTS: Autoreactive IgM coated erythrocytes and platelets from many CVID patients with AICs (CVID+AIC). On glycan arrays, CVID+AIC plasma IgM narrowly recognized erythrocytic i antigens and platelet i-related antigens and failed to bind hundreds of pathogen- and tumor-associated carbohydrates. Polyclonal i antigen-recognizing B-cell receptors were highly enriched among CVID+AIC circulating MZ B cells. Within tonsillar tissues, MZ B cells secreted copious IgM when activated by the combination of IL-10 and IL-21 or when cultured with IL-10/IL-21-secreting FOXP3-CD25hi T follicular helper (Tfh) cells. In lymph nodes from immunocompetent controls, MZ B cells, plentiful FOXP3+ regulatory T cells, and rare FOXP3-CD25+ cells that represented likely CD25hi Tfh cells all localized outside of germinal centers. In CVID+AIC lymph nodes, cellular positions were similar but CD25hi Tfh cells greatly outnumbered regulatory cells. CONCLUSIONS: Our findings indicate that glycan-reactive IgM autoantibodies produced outside of germinal centers may contribute to the autoimmune pathogenesis of CVID.

11.
Neurol Clin Pract ; 14(3): e200228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38690148

ABSTRACT

Objectives: Heterozygous missense variants in MYBPC1 have been recently identified in 13 patients from 6 families with congenital myopathy with tremor. All the patients had mild skeletal myopathy invariably associated with a distinctive myogenic tremor and hypotonia with gradual clinical improvement. However, no phenotypic description has been reported for the neonatal respiratory impairment that patients may suffer. Methods: We report 3 new patients from 2 independent families with congenital myopathy with tremor. Results: Tremors and respiratory distress associated with stridor should raise the diagnosis of congenital myopathy with tremors linked to MYBPC1-dominant variants in children with neonatal hypotonia. Discussion: Neonatal severe respiratory impairment requiring intensive noninvasive ventilation because of stridor is described in 2 patients. Stridor was previously reported in one other case and is part of the clinical features.

12.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699337

ABSTRACT

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.

13.
Nat Methods ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783067

ABSTRACT

Spatially resolved transcriptomics (SRT) technologies have significantly advanced biomedical research, but their data analysis remains challenging due to the discrete nature of the data and the high levels of noise, compounded by complex spatial dependencies. Here, we propose spaVAE, a dependency-aware, deep generative spatial variational autoencoder model that probabilistically characterizes count data while capturing spatial correlations. spaVAE introduces a hybrid embedding combining a Gaussian process prior with a Gaussian prior to explicitly capture spatial correlations among spots. It then optimizes the parameters of deep neural networks to approximate the distributions underlying the SRT data. With the approximated distributions, spaVAE can contribute to several analytical tasks that are essential for SRT data analysis, including dimensionality reduction, visualization, clustering, batch integration, denoising, differential expression, spatial interpolation, resolution enhancement and identification of spatially variable genes. Moreover, we have extended spaVAE to spaPeakVAE and spaMultiVAE to characterize spatial ATAC-seq (assay for transposase-accessible chromatin using sequencing) data and spatial multi-omics data, respectively.

14.
Brain Behav Immun ; 119: 767-780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677625

ABSTRACT

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Immune System Diseases , Multifactorial Inheritance , Neurodevelopmental Disorders , Polymorphism, Single Nucleotide , Humans , Neurodevelopmental Disorders/genetics , Immune System Diseases/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Multifactorial Inheritance/genetics
15.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652549

ABSTRACT

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Subject(s)
CD8-Positive T-Lymphocytes , Extracellular Matrix , Sarcoma , Tumor Microenvironment , YAP-Signaling Proteins , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Animals , Tumor Microenvironment/immunology , Mice , YAP-Signaling Proteins/immunology , YAP-Signaling Proteins/genetics , Humans , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Sarcoma/immunology , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , Collagen Type VI/genetics , Collagen Type VI/immunology , Collagen Type VI/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/immunology , Oncogenes , Neoplasm Proteins/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I/immunology
16.
Am J Hum Genet ; 111(6): 999-1005, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38688278

ABSTRACT

The differential performance of polygenic risk scores (PRSs) by group is one of the major ethical barriers to their clinical use. It is also one of the main practical challenges for any implementation effort. The social repercussions of how people are grouped in PRS research must be considered in communications with research participants, including return of results. Here, we outline the decisions faced and choices made by a large multi-site clinical implementation study returning PRSs to diverse participants in handling this issue of differential performance. Our approach to managing the complexities associated with the differential performance of PRSs serves as a case study that can help future implementers of PRSs to plot an anticipatory course in response to this issue.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Risk Factors , Genome-Wide Association Study , Risk Assessment , Genetic Testing/methods , Genetic Risk Score
17.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649760

ABSTRACT

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Subject(s)
Genetic Predisposition to Disease , Leukopenia , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Humans , Leukocyte Count , Male , Female , Leukopenia/genetics , Leukopenia/blood , Middle Aged , Aged , Adult , Immunosuppressive Agents/therapeutic use
18.
medRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559031

ABSTRACT

Genetic effects on changes in human traits over time are understudied and may have important pathophysiological impact. We propose a framework that enables data quality control, implements mixed models to evaluate trajectories of change in traits, and estimates phenotypes to identify age-varying genetic effects in genome-wide association studies (GWASs). Using childhood body mass index (BMI) as an example, we included 71,336 participants from six cohorts and estimated the slope and area under the BMI curve within four time periods (infancy, early childhood, late childhood and adolescence) for each participant, in addition to the age and BMI at the adiposity peak and the adiposity rebound. GWAS on each of the estimated phenotypes identified 28 genome-wide significant variants at 13 loci across the 12 estimated phenotypes, one of which was novel (in DAOA) and had not been previously associated with childhood or adult BMI. Genetic studies of changes in human traits over time could uncover novel biological mechanisms influencing quantitative traits.

19.
J Med Genet ; 61(7): 677-688, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38443156

ABSTRACT

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.


Subject(s)
Autism Spectrum Disorder , Autoantigens , Epigenesis, Genetic , Nuclear Proteins , Female , Humans , Male , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/immunology , Autistic Disorder/genetics , Autistic Disorder/pathology , Exome Sequencing , Genetic Predisposition to Disease , Mutation , Pedigree , Signal Transduction/genetics , Autoantigens/genetics , Nuclear Proteins/genetics
20.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38432581

ABSTRACT

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Protein-Arginine N-Methyltransferases , Male , Animals , Mice , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , CRISPR-Cas Systems , Genes, Essential , Early Detection of Cancer
SELECTION OF CITATIONS
SEARCH DETAIL