Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1414005, 2024.
Article in English | MEDLINE | ID: mdl-38863494

ABSTRACT

Introduction: Our objective in this study was to prepare a novel type of polymethyl methacrylate (PMMA) bone cement, analyze its material properties, and evaluate its safety and antibacterial efficacy. Methods: A halamine compound methacrylate antibacterial PMMA bone cement containing an N-Cl bond structure was formulated, and its material characterization was determined with Fourier transform infrared spectroscopy (FT-IR) and 1H-NMR. The antibacterial properties of the material were studied using contact bacteriostasis and releasing-type bacteriostasis experiments. Finally, in vitro and in vivo biocompatibility experiments were performed to analyze the toxic effects of the material on mice and embryonic osteoblast precursor cells (MC3T3-E1). Results: Incorporation of the antibacterial methacrylate monomer with the N-halamine compound in the new antibacterial PMMA bone cement significantly increased its contact and releasing-type bacteriostatic performance against Staphylococcus aureus. Notably, at 20% and 25% additions of N-halamine compound, the contact and releasing-type bacteriostasis rates of bone cement samples reached 100% (p < 0.001). Furthermore, the new antibacterial bone cement containing 5%, 10%, and 15% N-halamine compounds showed good biocompatibility in vitro and in vivo. Conclusion: In this study, we found that the novel antibacterial PMMA bone cement with N-halamine compound methacrylate demonstrated good contact and releasing-type bacteriostatic properties against S. aureus. In particular, bone cement containing a 15% N-halamine monomer exhibited strong antibacterial properties and good in vitro and in vivo biocompatibility.

2.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38623831

ABSTRACT

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Subject(s)
Bone Cements , Hydrazones , Isoniazid , Isoniazid/chemistry , Isoniazid/pharmacology , Bone Cements/chemistry , Animals , Hydrazones/chemistry , Hydrazones/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/administration & dosage , Mice , Drug Liberation , Polymethyl Methacrylate/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
3.
J Orthop Surg Res ; 19(1): 169, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448971

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the impact of four natural product extracts, namely, aloe-emodin, quercetin, curcumin, and tannic acid, on the in vitro bacteriostatic properties and biocompatibility of gentamicin-loaded bone cement and to establish an experimental groundwork supporting the clinical utility of antibiotic-loaded bone cements (ALBC). METHODS: Based on the components, the bone cement samples were categorized as follows: the gentamicin combined with aloe-emodin group, the gentamicin combined with quercetin group, the gentamicin combined with curcumin group, the gentamicin combined with tannic acid group, the gentamicin group, the aloe-emodin group, the quercetin group, the curcumin group, and the tannic acid group. Using the disk diffusion test, we investigated the antibacterial properties of the bone cement material against Staphylococcus aureus (n = 4). We tested cell toxicity and proliferation using the cell counting kit-8 (CCK-8) and examined the biocompatibility of bone cement materials. RESULTS: The combination of gentamicin with the four natural product extracts resulted in significantly larger diameters of inhibition zones compared to gentamicin alone, and the difference was statistically significant (P < 0.05). Except for the groups containing tannic acid, cells in all other groups showed good proliferation across varying time intervals without displaying significant cytotoxicity (P < 0.05). CONCLUSION: In this study, aloe-emodin, quercetin, curcumin, and tannic acid were capable of enhancing the in vitro antibacterial performance of gentamicin-loaded bone cement against S. aureus. While the groups containing tannic acid displayed moderate cytotoxicity in in vitro cell culture, all other groups showed no discernible cytotoxic effects.


Subject(s)
Anthraquinones , Biological Products , Curcumin , Emodin , Polyphenols , Gentamicins/pharmacology , Bone Cements/pharmacology , Curcumin/pharmacology , Quercetin , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL