Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Int Immunopharmacol ; 138: 112586, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955030

ABSTRACT

Nimodipine, a calcium antagonist, exert beneficial neurovascular protective effects in clinic. Recently, Calcium channel blockers (CCBs) was reported to protect against liver fibrosis in mice, while the exact effects of Nimodipine on liver injury and hepatic fibrosis remain unclear. In this study, we assessed the effect of nimodipine in Thioacetamide (TAA)-induced liver fibrosis mouse model. Then, the collagen deposition and liver inflammation were assessed by HE straining. Also, the frequency and phenotype of NK cells, CD4+T and CD8+T cells and MDSC in liver and spleen were analyzed using flow cytometry. Furthermore, activation and apoptosis of primary Hepatic stellate cells (HSCs) and HSC line LX2 were detected using α-SMA staining and TUNEL assay, respectively. We found that nimodipine administration significantly attenuated liver inflammation and fibrosis. And the increase of the numbers of hepatic NK and NKT cells, a reversed CD4+/CD8+T ratio, and reduced the numbers of MDSC were observed after nimodipine treatment. Furthermore, nimodipine administration significantly decreased α-SMA expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Nimodipine also reduced the proliferation of LX2, and significantly promoted high level of apoptosis in vitro. Moreover, nimodipine downregulated Bcl-2 and Bcl-xl, simultaneously increased expression of JNK, p-JNK, and Caspase-3. Together, nimodipine mediated suppression of growth and fibrogenesis of HSCs may warrant its potential use in the treatment of liver fibrosis.

2.
Sci Adv ; 10(10): eadk9485, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446879

ABSTRACT

Synergistic phototherapy stands for superior treatment prospects than a single phototherapeutic modality. However, the combined photosensitizers often suffer from incompatible excitation mode, limited irradiation penetration depth, and lack of specificity. We describe the development of upconversion dual-photosensitizer-expressing bacteria (UDPB) for near-infrared monochromatically excitable combination phototherapy. UDPB are prepared by integrating genetic engineering and surface modification, in which bacteria are encoded to simultaneously express photothermal melanin and phototoxic KillerRed protein and the surface primary amino groups are derived to free thiols for biorthogonal conjugation of upconversion nanoparticles. UDPB exhibit a near-infrared monochromatic irradiation-mediated dual-activation characteristic as the photothermal conversion of melanin can be initiated directly, while the photodynamic effect of KillerRed can be stimulated indirectly by upconverted visible light emission. UDPB also show living features to colonize hypoxic lesion sites and inhibit pathogens via bacterial community competition. In two murine models of solid tumor and skin wound infection, UDPB separately induce robust antitumor response and a rapid wound healing effect.


Subject(s)
Melanins , Photosensitizing Agents , Animals , Mice , Photosensitizing Agents/pharmacology , Phototherapy , Bacteria , Infrared Rays
3.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474648

ABSTRACT

Currently, the alteration of external factors during crude oil extraction easily disrupts the thermodynamic equilibrium of asphaltene, resulting in the continuous flocculation and deposition of asphaltene molecules in crude oil. This accumulation within the pores of reservoir rocks obstructs the pore throat, hindering the efficient extraction of oil and gas, and consequently, affecting the recovery of oil and gas resources. Therefore, it is crucial to investigate the principles of asphaltene deposition inhibition and the synthesis of asphaltene inhibitors. In recent years, the development of nanotechnology has garnered significant attention due to its unique surface and volume effects. Nanoparticles possess a large specific surface area, high adsorption capacity, and excellent suspension and catalytic abilities, exhibiting unparalleled advantages compared with traditional organic asphaltene inhibitors, such as sodium dodecyl benzene sulfonate and salicylic acid. At present, there are three primary types of nanoparticle inhibitors: metal oxide nanoparticles, organic nanoparticles, and inorganic nonmetal nanoparticles. This paper reviews the recent advancements and application challenges of nanoparticle asphaltene deposition inhibition technology based on the mechanism of asphaltene deposition and nano-inhibitors. The aim was to provide insights for ongoing research in this field and to identify potential future research directions.

4.
NPJ Vaccines ; 9(1): 22, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310094

ABSTRACT

Here we report on the development and comprehensive evaluations of an mRNA vaccine for chronic hepatitis B (CHB) treatment. In two different HBV carrier mouse models generated by viral vector-mediated HBV transfection (pAAV-HBV1.2 and rAAV8-HBV1.3), this vaccine demonstrates sufficient and persistent virological suppression, and robust immunogenicity in terms of induction of strong innate immune activation, high-level virus-specific antibodies, memory B cells and T cells. mRNA platform therefore holds prospects for therapeutic vaccine development to combat CHB.

5.
Immunology ; 172(2): 181-197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38269617

ABSTRACT

Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Animals , Immunotherapy/methods , Signal Transduction/drug effects , Molecular Targeted Therapy
6.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834070

ABSTRACT

The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.


Subject(s)
Apiaceae , Apium , Daucus carota , Genome, Chloroplast , Genome, Mitochondrial , Magnoliopsida , Phylogeny , Apium/genetics , Genome, Mitochondrial/genetics , Apiaceae/genetics , Daucus carota/genetics , Magnoliopsida/genetics
7.
Inorg Chem ; 62(23): 9111-9119, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37262419

ABSTRACT

Here, we synthesized pure Cs3Bi2Cl9 (CBC) and manganese (Mn)-doped crystals with different feeding ratios, leading to changes in structure and luminescence. The crystals Cs3Bi2Cl9-Mn (CBCM) formed by doping a minor amount of Mn2+ (Bi/Mn = 8:1) maintain the orthorhombic phase structure of the host, but when Bi/Mn = 2:1, the crystal structure is more inclined to form Cs4MnBi2Cl12 (CMBC) of a trigonal phase. Combined with density functional theory (DFT) calculation, the results demonstrate that a moderate amount of Mn2+ doping can create impurity energy levels in the forbidden band. However, as the structure transitions, the type of energy band structure changes from indirect to direct, with completely different electronic orbital features. Temperature-dependent time-resolved and steady-state photoluminescence spectroscopies are used to explore the structure-related thermal properties and transitional process. Differences energy transfer routes are revealed, with CBCM relying on intersystem energy transfer and CMBC mainly depending on direct excitation of Mn2+ to produce d-d transitions. Furthermore, since CMBC is temperature-sensitive, we perform the first photoluminescent (PL) lifetime temperature measurement using CBMC and obtain a maximum relative sensitivity of 1.7 %K-1 and an absolute sensitivity of 0.0099 K-1. Our work provides insight into the mechanism of Mn2+ doping-induced luminescence and offers a potentially effective doping strategy for improving the PL properties of lead-free metal halide perovskites.

8.
Oncoimmunology ; 11(1): 2010894, 2022.
Article in English | MEDLINE | ID: mdl-36524206

ABSTRACT

Hepatocellular carcinoma (HCC) is associated with a high mortality rate and presents a major challenge for human health. Activation of multiple oncogenes has been reported to be strongly associated with the progression of HCC. Moreover, the immunosuppressive tumor microenvironment (TME) and the host immune system are also implicated in the development of malignant HCC tumors. Glypican-3 (GPC-3), a proteoglycan involved in the regulation of cell proliferation and apoptosis, is aberrantly expressed in HCC. We synthesized a short 5'-triphosphate (3p) RNA targeting GPC-3, 3p-GPC-3 siRNA, and found that it effectively inhibited subcutaneous HCC growth by raising type I IFN levels in tumor cells and serum and promoting tumor cell apoptosis. Moreover, 3p-GPC-3 siRNA was able to enhance the activation of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells while reducing the proportion of regulatory T cells (Tregs) in the TME. Most intriguingly, a blocking anti-PD-1 antibody improved the anti-tumor effect of 3p-GPC-3 siRNA, predominantly by activating the immune response, reversing immune exhaustion, and improving immune memory. Our study suggests that the combination of 3p-GPC-3 siRNA administration and PD-1 blockade may represent a promising therapeutic strategy for HCC.


Subject(s)
Carcinoma, Hepatocellular , Glypicans , Immune Checkpoint Inhibitors , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , CD8-Positive T-Lymphocytes , Glypicans/genetics , Glypicans/therapeutic use , Immunologic Memory/genetics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Tumor Microenvironment , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
9.
Front Immunol ; 13: 1046755, 2022.
Article in English | MEDLINE | ID: mdl-36569893

ABSTRACT

Immune checkpoint inhibitors (ICIs) have shown promising therapeutic effects in the treatment of advanced solid cancers, but their overall response rate is still very low for certain tumor subtypes, limiting their clinical scope. Moreover, the high incidence of drug resistance (including primary and acquired) and adverse effects pose significant challenges to the utilization of these therapies in the clinic. ICIs enhance T cell activation and reverse T cell exhaustion, which is a complex and multifactorial process suggesting that the regulatory mechanisms of ICI therapy are highly heterogeneous. Recently, metabolic reprogramming has emerged as a novel means of reversing T-cell exhaustion in the tumor microenvironment; there is increasing evidence that T cell metabolic disruption limits the therapeutic effect of ICIs. This review focuses on the crosstalk between T-cell metabolic reprogramming and ICI therapeutic efficacy, and summarizes recent strategies to improve drug tolerance and enhance anti-tumor effects by targeting T-cell metabolism alongside ICI therapy. The identification of potential targets for altering T-cell metabolism can significantly contribute to the development of methods to predict therapeutic responsiveness in patients receiving ICI therapy, which are currently unknown but would be of great clinical significance.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Neoplasms/therapy , Radioimmunotherapy , Tumor Microenvironment
10.
Chem Biol Interact ; 368: 110251, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36343683

ABSTRACT

Edaravone (EDA), a strong novel free radical scavenger, have been demonstrated to exert neurovascular protective effects clinically. Furthermore, EDA can suppress the lung injury, pulmonary fibrosis and skin fibrosis, while the precise effects and mechanisms of EDA on liver injury and fibrosis remain unclear. The effects of EDA on the Thioacetamide (TAA)-induced liver fibrosis were evaluated by sirius red staining, α-SMA immunohistochemistry. The percentages of immune cell subsets were analyzed by flow cytometry. Immunofluorescence assay was performed to identify the fibrotic properties of hepatic stellate cells (HSCs). Western blot and qPCR were used to detect the levels of liver fibrosis-related molecules and IL-1ß. EDA displayed a hepatic protective role in TAA-induced chronic liver fibrosis via inhibiting monocyte/macrophages recruitment and IL-1ß production of macrophages. Mechanically, EDA inhibited of NF-κB signal pathway and reactive oxygen species (ROS) production in macrophages. Moreover, EDA treatment indirectly suppressed the activation of HSCs by decreasing the IL-1ß secretion of macrophages. Together, EDA protects against TAA-induced liver fibrosis via decreasing the IL-1ß production of macrophages, thereby providing a feasible solution for clinical treatment of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Humans , Edaravone/adverse effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Hepatic Stellate Cells/metabolism , Thioacetamide/toxicity , Fibrosis , Macrophages/metabolism , Liver
11.
Biochem Pharmacol ; 206: 115334, 2022 12.
Article in English | MEDLINE | ID: mdl-36328133

ABSTRACT

Monocyte chemotactic protein-1 (MCP-1) is known to be able to facilitate vascular endothelial growth factor (VEGF) gene expression, hence promoting vascular hyperpermeability and neovascularization. We show here that a microRNA molecule, miR-374b-5p can target the 3'-untranslated region of the VEGF mRNA, thus preventing VEGF production. Additionally, MCP-1 promotes the acetylation of transcription factor stat3 at Lys685, which facilitates the formation of an ac-stat3-DNA methyltransferase-histone methyltransferase complex (ac-stat3/DNMT1/EZH2) that binds to the promoter of the miR-374b-5p gene. This results in diminished miR-374b-5p expression and enhanced VEGF production. Moreover, treatment of appropriate animal models either with a miR-374b-5p mimicry or with inhibitors of either stat3 acetylation, DNMT1, or EZH2, leads to marked inhibition of MCP-1-promoted neovascularization and tumor growth. These findings indicate that MCP-1 facilitated inhibition of miR-374b-5p gene expression leads to the removal of a block of VEGF mRNA translation by miR-374b-5p. This mechanism could be of importance in the modulation of inflammatory conditions.


Subject(s)
MicroRNAs , Vascular Endothelial Growth Factor A , Animals , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Protein Biosynthesis , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Neovascularization, Pathologic/genetics
12.
Cell Mol Immunol ; 19(12): 1347-1360, 2022 12.
Article in English | MEDLINE | ID: mdl-36369367

ABSTRACT

Chronic hepatitis B (CHB) infection remains a serious public health problem worldwide; however, the relationship between cholesterol levels and CHB remains unclear. We isolated peripheral blood mononuclear cells from healthy blood donors and CHB patients to analyze free cholesterol levels, lipid raft formation, and cholesterol metabolism-related pathways. Hepatitis B virus (HBV)-carrier mice were generated and used to confirm changes in cholesterol metabolism and cell-surface lipid raft formation in dendritic cells (DCs) in the context of CHB. Additionally, HBV-carrier mice were immunized with a recombinant HBV vaccine (rHBVvac) combined with lipophilic statins and evaluated for vaccine efficacy against HBV. Serum samples were analyzed for HBsAg, anti-HBs, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg. CHB reduced free cholesterol levels and suppressed lipid raft formation on DCs in patients with CHB and HBV-carrier mice, whereas administration of lipophilic statins promoted free cholesterol accumulation and restored lipid rafts on DCs accompanied by an enhanced antigen-presentation ability in vitro and in vivo. Cholesterol accumulation on DCs improved the rHBVvac-mediated elimination of serum HBV DNA and intrahepatic HBV DNA, HBV RNA, and HBcAg and promoted the rHBVvac-mediated generation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells, induction of the development of memory responses against HBV reinfection, and seroconversion from HBsAg to anti-HBs. The results demonstrated the important role of cholesterol levels in DC dysfunction during CHB, suggesting that strategies to increase cholesterol accumulation on DCs might enhance therapeutic vaccine efficacy against HBV and support development toward clinical CHB treatment.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Vaccines , Mice , Animals , Hepatitis B Surface Antigens , Hepatitis B Core Antigens/therapeutic use , DNA, Viral , Leukocytes, Mononuclear , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hepatitis B virus , Hepatitis B Antibodies , Dendritic Cells , Cholesterol/therapeutic use , RNA
13.
Emerg Microbes Infect ; 11(1): 2529-2543, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36153658

ABSTRACT

Autophagy, a cellular surveillance mechanism, plays an important role in combating invading pathogens. However, viruses have evolved various strategies to disrupt autophagy and even hijack it for replication and release. Here, we demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV) non-structural protein 1(nsp1) induces autophagy but inhibits autophagic activity. MERS-CoV nsp1 expression increased ROS and reduced ATP levels in cells, which activated AMPK and inhibited the mTOR signalling pathway, resulting in autophagy induction. Meanwhile, as an endonuclease, MERS-CoV nsp1 downregulated the mRNA of lysosome-related genes that were enriched in nsp1-located granules, which diminished lysosomal biogenesis and acidification, and inhibited autophagic flux. Importantly, MERS-CoV nsp1-induced autophagy can lead to cell death in vitro and in vivo. These findings clarify the mechanism by which MERS-CoV nsp1-mediated autophagy regulation, providing new insights for the prevention and treatment of the coronavirus.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/physiology , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Lysosomes/metabolism , Autophagy , Endonucleases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism
14.
Cancer Lett ; 547: 215880, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35981569

ABSTRACT

Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.


Subject(s)
Carcinoma, Hepatocellular , Endoplasmic Reticulum Stress , Liver Neoplasms , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/therapeutic use , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Microenvironment
15.
Mol Oncol ; 16(15): 2861-2880, 2022 08.
Article in English | MEDLINE | ID: mdl-35665592

ABSTRACT

In hepatocellular carcinoma (HCC), the signal transducer and activator of transcription 3 (STAT3) is present in an overactive state that is closely related to tumour development and immune escape. STAT3 inhibition reshapes the tumour immune microenvironment, but the underlying mechanisms have not been fully clarified. We found that STAT3 inhibition could induce immunogenic cell death (ICD) of HCC cells via translocation of the "eat me" molecule calreticulin to the cell surface and a significant reduction in the expression of the "don't eat me" molecule leucocyte surface antigen CD47. STAT3 inhibition promoted dendritic cell (DC) activation and enhanced the recognition and phagocytosis of HCC cells by macrophages. Furthermore, STAT3 inhibition prevented the expression of key glycolytic enzymes, facilitating the induction of ICD in HCC. Interestingly, STAT3 directly regulated the transcription of CD47 and solute carrier family 2 member 1 (SLC2A1; also known as GLUT1). In subcutaneous and orthotopic transplantation mouse tumour models, the STAT3 inhibitor napabucasin prevented tumour growth and induced the expression of calreticulin and the protein disulfide isomerase family A member 3 (PDIA3; also known as ERp57) but suppressed that of CD47 and GLUT1. Meanwhile, the amount of tumour-infiltrated DCs and macrophages increased, along with the expression of costimulatory molecules. More CD4+ and CD8+ T cells accumulated in tumour tissues, and CD8+ T cells had lower expression of checkpoint molecules such as lymphocyte activation gene 3 protein (LAG-3) and programmed cell death protein 1 (PD-1). Significantly, the antitumour immune memory response was induced by treatment targeting STAT3. These findings provide a new mechanism for targeting STAT3-induced ICD in HCC, and confirms STAT3 as a potential target for the treatment of HCC via reshaping the tumour immune microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , CD47 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Calreticulin/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Glucose Transporter Type 1/metabolism , Glycolysis , Immunogenic Cell Death , Liver Neoplasms/pathology , Mice , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
16.
World J Gastroenterol ; 28(9): 881-896, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35317051

ABSTRACT

Chronic hepatitis B virus (HBV) infection is an international health problem with extremely high mortality and morbidity rates. Although current clinical chronic hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral breakthrough may result due to non-adherence to treatment, the emergence of viral resistance, and a long treatment cycle. Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems. Therefore, understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control. This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Hepatitis B virus , Humans
17.
Phys Chem Chem Phys ; 24(14): 8303-8310, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319033

ABSTRACT

Benefiting from the easily adjustable optical properties of perovskite, CsPbBr3 nanocrystals (NCs) are considered to show their advantages in the field of display. Here, we report that a selective laser irradiation is used to induce CsPbBr3 nanostructural reshaping and then yielding a morphological change. Under 360 or 405 nm laser irradiation, a hierarchical crystal growth process occurs for the fabricated CsPbBr3 nanoplatelets (NPLs), which are first arranged in a side-by-side manner and reshaped into nanorods (NRs), and then NRs are arranged in the face-to-face manner to reshape into NCs. The entire process is monitored optically and microscopically, which showed that crystal growth relies on seeking a dynamic balance between heat dissipation and accumulation under laser irradiation. The heat on NPLs generated by laser irradiation dissipated with a low dissipation rate and thus led to temperature rising and lattice breaking, which turned out to be the driving force for the crystal growth in CsPbBr3 NPLs. This feasible laser irradiation-assisted method provides for crystal growth a reliable and scalable route toward the preparation of perovskite functional materials.

18.
Oncoimmunology ; 11(1): 2032918, 2022.
Article in English | MEDLINE | ID: mdl-35127254

ABSTRACT

Macrophages of the M2 phenotype in malignant tumors significantly aid tumor progression and metastasis, as opposed to the M1 phenotype that exhibits anti-cancer characteristics. Raising the ratio of M1/M2 is thus a promising strategy to ameliorate the tumor immunomicroenvironment toward cancer inhibition. We report here that tumor necrosis factor superfamily-15 (TNFSF15), a cytokine with anti-angiogenic activities, is able to facilitate the differentiation and polarization of macrophages toward M1 phenotype. We found that tumors formed in mice by Lewis lung carcinoma (LLC) cells artificially overexpressing TNFSF15 exhibited retarded growth. The tumors displayed a greater percentage of M1 macrophages than those formed by mock-transfected LLC cells. Treatment of mouse macrophage RAW264.7 cells with recombinant TNFSF15 led to augmentation of the phagocytic and pro-apoptotic capacity of the macrophages against cancer cells. Mechanistically, TNFSF15 activated STAT1/3 in bone marrow cells and MAPK, Akt and STAT1/3 in naive macrophages. Additionally, TNFSF15 activated STAT1/3 but inactivated STAT6 in M2 macrophages. Modulations of these signals gave rise to a reposition of macrophage phenotypes toward M1. The ability of TNFSF15 to promote macrophage differentiation and polarization toward M1 suggests that this unique cytokine may have a utility in the reconstruction of the immunomicroenvironment in favor of tumor suppression.


Subject(s)
Carcinoma, Lewis Lung , Macrophages , Tumor Necrosis Factor Ligand Superfamily Member 15 , Animals , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Cell Differentiation , Macrophages/metabolism , Macrophages/pathology , Mice , Phenotype , RAW 264.7 Cells , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Tumor Necrosis Factor-alpha
19.
Virulence ; 13(1): 355-369, 2022 12.
Article in English | MEDLINE | ID: mdl-35129074

ABSTRACT

MERS-CoV infection can damage the cellular metabolic processes, but the underlying mechanisms are largely unknown. Through screening, we found non-structural protein 1 (nsp1) of MERS-CoV could inhibit cell viability, cell cycle, and cell migration through its endonuclease activity. Transcriptome sequencing revealed that MERS-CoV nsp1 specifically downregulated the mRNAs of ribosomal protein genes, oxidative phosphorylation protein genes, and antigen presentation genes, but upregulated the mRNAs of transcriptional regulatory genes. Further analysis shown nsp1 existed in a novel ribonucleosome complex formed via liquid-liquid phase separation, which did not co-localize with mitochondria, lysosomes, P-bodies, or stress granules. Interestingly, the nsp1-located granules specifically contained mRNAs of ribosomal protein genes and oxidative phosphorylation genes, which may explain why MERS-CoV nsp1 selectively degraded these mRNAs in cells. Finally, MERS-CoV nsp1 transgenic mice showed significant loss of body weight and an increased sensitivity to poly(I:C)-induced inflammatory death. These findings demonstrate a new mechanism by which MERS-CoV impairs cell viability, which serves as a potential novel target for preventing MERS-CoV infection-induced pathological damage.Abbreviations: (Middle East respiratory syndrome coronavirus (MERS-CoV), Actinomycin D (Act D), liquid-liquid phase separation (LLPS), stress granules (SGs), Mass spectrometry (IP-MS), RNA Binding Protein Immunoprecipitation (RIP)).


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Ribosomal Proteins , Viral Nonstructural Proteins , Animals , Gene Expression Regulation , Mice , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Messenger/genetics , Ribosomal Proteins/genetics
20.
Int J Biol Sci ; 18(1): 154-165, 2022.
Article in English | MEDLINE | ID: mdl-34975324

ABSTRACT

Chronic Hepatitis B virus (CHB) infection is a global public health problem. Oligodeoxynucleotides (ODNs) containing class C unmethylated cytosine-guanine dinucleotide (CpG-C) motifs may provide potential adjuvants for the immunotherapeutic strategy against CHB, since CpG-C ODNs stimulate both B cell and dendritic cell (DC) activation. However, the efficacy of CpG-C ODN as an anti-HBV vaccine adjuvant remains unclear. In this study, we demonstrated that CpG M362 (CpG-C ODN) as an adjuvant in anti-HBV vaccine (cHBV-vaccine) successfully and safely eliminated the virus in HBV-carrier mice. The cHBV-vaccine enhanced DC maturation both in vivo and in vitro, overcame immune tolerance, and recovered exhausted T cells in HBV-carrier mice. Furthermore, the cHBV-vaccine elicited robust hepatic HBV-specific CD8+ and CD4+ T cell responses, with increased cellular proliferation and IFN-γ secretion. Additionally, the cHBV-vaccine invoked a long-lasting follicular CXCR5+ CD8+ T cell response following HBV re-challenge. Taken together, CpG M362 in combination with rHBVvac cleared persistent HBV and achieved long-term virological control, making it a promising candidate for treating CHB.


Subject(s)
Adjuvants, Immunologic/pharmacology , Dinucleoside Phosphates/immunology , Hepatitis B Vaccines/pharmacology , Hepatitis B, Chronic/immunology , Oligodeoxyribonucleotides/immunology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...