Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78
1.
Discov Oncol ; 15(1): 154, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733440

Reprogramming of the serine synthesis pathway (SSP) is intricately linked to the progression of epithelial ovarian cancer (EOC). CBR-5884, a selective small-molecule inhibitor targeting phosphoglycerate dehydrogenase (PHGDH), effectively impedes the de novo synthesis of serine within cancer cells. This study aimed to evaluate the inhibitory effect of CBR-5884 on EOC cells and delineate its specific mechanism, thereby proposing a novel therapeutic approach for treating EOC. The suppression of serine biosynthesis after CBR-5884 treatment was evaluated using RNA sequencing and a serine assay kit, and the results showed that CBR-5884 effectively downregulated serine biosynthesis in EOC cells, particularly those expressing high levels of PHGDH. In vitro studies revealed that CBR-5884 demonstrated significant antitumor effects and suppressed migration and invasion of EOC cells through down-regulation of the integrin subunit beta 4 (ITGB4)/extracellular signal-regulated kinase (ERK)/epithelial-mesenchymal transition signal axis. Additionally, CBR-5884 mitigated the stemness of EOC cells and heightened their sensitivity to chemotherapy. Moreover, in vivo studies revealed that CBR-5884 significantly delayed tumor growth, with histological analysis indicating the safety profile of CBR-5884. Finally, the patient-derived organoid (PDO) models were utilized to explore the preclinical efficacy of CBR-5884 against EOC cells, and the results unveiled that CBR-5884 impeded proliferation and downregulated the expression of ITGB4 in EOC PDO models. Our findings supports the anticancer properties of CBR-5884 in EOC cells exhibiting high PHGDH expression, manifesting through the suppression of proliferation, migration, and invasion, while enhancing chemotherapy sensitivity, suggesting that CBR-5884 holds promise as an efficacious strategy for the treatment of EOC.

2.
Talanta ; 276: 126282, 2024 May 23.
Article En | MEDLINE | ID: mdl-38788382

Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTS●+ without using H2O2. Under optimum conditions, the ABTS●+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTS●+. The ultrarobust stable ABTS●+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 µM, respectively. This study provides a facile way to prepare ultrarobust stable ABTS●+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.

3.
Heliyon ; 10(9): e30506, 2024 May 15.
Article En | MEDLINE | ID: mdl-38756571

Background: Lung adenocarcinoma (LUAD) is a pulmonary malignant disease that poses a high risk of mortality and morbidity. Previous study indicated that ORC1 plays an oncogenic function. However, the precise regulatory function that ORC1 serves in the progression of LUAD is still not clearly known. Methods: Bioinformatics analyses were performed using TCGA and GEO datasets. The human LUAD cell line NCIH1355, NCIH1568 as well as BEAS-2B cell line (human normal lung epithelial cell) were utilized for in vitro study. LUAD cell proliferation were determined via CCK-8 assays and RT-qPCR for ki-67. The relation of ORC1 and SLC7A11 was detected by Western blot and qPCR with or without sh-RNA. The expression level ACSL4, the biomarker of ferroptosis, were detected using RT-qPCR. Results: ORC1 and SLC7A11 exhibit high expression levels in both LUAD patients and cell lines, and are strongly associated with poor prognosis. In vitro experiments demonstrate that ORC1 and SLC7A11 promote proliferation of LUAD cell lines while inhibiting gefitinib-induced ferroptosis. Additionally, the function of ORC1 in LUAD cells is dependent on SLC7A11. Conclusion: ORC1 promotes LUAD cell proliferation and inhibits ferroptosis in a SLC7A11-dependent manner. This implies that ORC1 could potentially serve as a useful diagnosis biomarker and treatment target.

4.
J Transl Med ; 22(1): 192, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383406

BACKGROUND: Zinc finger SWIM-type containing 4 (ZSWIM4) induces drug resistance in breast cancer cells. However, its role in epithelial ovarian cancer (EOC) remains unknown. In this study, we aimed to investigate the clinical significance of ZSWIM4 expression in EOC and develop new clinical therapeutic strategies for EOC. METHODS: ZSWIM4 expression in control and EOC tumor tissues was examined using immunohistochemistry. Lentiviral transduction, Cell Counting Kit-8 assay, tumorsphere formation assay, flow cytometry, western blotting, and animal xenograft model were used to assess the role of ZSWIM4 in chemotherapy. Cleavage Under Targets and Tagmentation (CUT&Tag) assays, chromatin immunoprecipitation assays, and luciferase reporter assays were used to confirm FOXK1-mediated upregulation of ZSWIM4 expression. The mechanism by which ZSWIM4 inhibition improves chemosensitivity was evaluated using RNA-sequencing. A ZSWIM4-targeting inhibitor was explored by virtual screening and surface plasmon resonance analysis. Patient-derived organoid (PDO) models were constructed from EOC tumor tissues with ZSWIM4 expression. RESULTS: ZSWIM4 was overexpressed in EOC tumor tissues and impaired patient prognoses. Its expression correlated positively with EOC recurrence. ZSWIM4 expression was upregulated following carboplatin treatment, which, in turn, contributed to chemoresistance. Silencing ZSWIM4 expression sensitized EOC cells to carboplatin treatment in vitro and in vivo. FOXK1 could bind to the GTAAACA sequence of the ZSWIM4 promoter region to upregulate ZSWIM4 transcriptional activity and FOXK1 expression increased following carboplatin treatment, leading to an increase in ZSWIM4 expression. Mechanistically, ZSWIM4 knockdown downregulated the expression of several rate-limiting enzymes involved in glycine synthesis, causing a decrease in intracellular glycine levels, thus enhancing intracellular reactive oxygen species production induced by carboplatin treatment. Compound IPN60090 directly bound to ZSWIM4 protein and exerted a significant chemosensitizing effect in both EOC cells and PDO models. CONCLUSIONS: ZSWIM4 inhibition enhanced EOC cell chemosensitivity by ameliorating intracellular glycine metabolism reprogramming, thus providing a new potential therapeutic strategy for EOC.


Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Animals , Humans , Female , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carboplatin/therapeutic use , Cell Line, Tumor , Prognosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Forkhead Transcription Factors/metabolism
5.
Environ Pollut ; 338: 122581, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37748638

A multicopper oxidase Lac-W from Weizmannia coagulans 36D1 was identified and characterized as a laccase (Lac-W) with a robust enzymatic activity, which was used in various mycotoxins degradation. We demonstrated that Lac-W could directly degrade six major mycotoxins in the absence of redox mediators in pH 9.0, 24h static incubation at room temperature, including aflatoxin B1 (AFB1, 88%), zearalenone (60%), deoxynivalenol (34%), T-2 toxin (19%), fumonisin B1 (18%), and ochratoxin A (12%). The optimal condition for Lac-W to degrade AFB1 was 30 °C, pH 9.0, enzyme-substrate ratio 3U/µg in 24h static condition. Furthermore, we characterized aflatoxin Q1 as a Lac-W-mediated degradation product of AFB1 using UHPLC-MS/MS. Interestingly, degradation products of AFB1 failed to generate cell death and apoptosis of intestinal porcine epithelial cells. Finally, our molecular docking simulation results revealed that the substrate-binding pocket of Lac-W was large enough to allow the entry of six mycotoxins with different structures, and their degradation rates were positively correlated to their interacting affinity with Lac-W. In summary, the unique properties of the Lac-W make it a great candidate for detoxifying multiple mycotoxins contaminated food and feed cost-effectively and eco-friendly. Our study provides new insights into development of versatile enzymes which could simultaneously degrade multiple mycotoxins.


Mycotoxins , Animals , Swine , Aflatoxin B1 , Laccase/metabolism , Tandem Mass Spectrometry , Molecular Docking Simulation , Oxidation-Reduction
6.
ISA Trans ; 142: 683-692, 2023 Nov.
Article En | MEDLINE | ID: mdl-37532609

In this paper, we focus on addressing the air supply problem for fuel cells. The air supply system faces a challenge: operating at maximum load consumes a significant amount of power, while insufficient air can lead to oxygen starvation problems in fuel cells. An important metric, the oxygen excess ratio, indicates whether the fuel cell is receiving the appropriate amount of air. Unfortunately, directly measuring this ratio is generally impractical. To overcome this limitation, we propose a fixed-time observer that reconstructs the oxygen excess ratio within a short predetermined period. By utilizing this reconstructed index, we introduce a cascaded double-loop controller. Specifically, both the external and internal loops are regulated using a modified prescribed time control strategy. This approach enables the regulation of the oxygen excess ratio to the optimal value within a prescribed short time. The advantages of our proposed method are validated through hardware in-loop experiments, showcasing its superiority over conventional finite-time control techniques.

7.
Microbiol Spectr ; 11(3): e0274122, 2023 06 15.
Article En | MEDLINE | ID: mdl-36995237

The aim of this study was to investigate the transferability of acquired linezolid resistance genes and associated mobile genetic elements in an Enterococcus faecalis isolate QZ076, cocarrying optrA, cfr, cfr(D), and poxtA2 genes. MICs were determined by broth microdilution. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The transfer of linezolid resistance genes was investigated by conjugation, using E. faecalis JH2-2 and clinical methicillin-resistant Staphylococcus aureus (MRSA) 109 as recipients. E. faecalis QZ076 harbors four plasmids, designated pQZ076-1 to pQZ076-4, with optrA located in the chromosomal DNA. The gene cfr was located on a novel pseudocompound transposon, designated Tn7515, integrated into the 65,961-bp pCF10-like pheromone-responsive conjugative plasmid pQZ076-1. Tn7515 generated 8-bp direct target duplications (5'-GATACGTA-3'). The genes cfr(D) and poxtA2 were colocated on the 16,397-bp mobilizable broad-host-range Inc18 plasmid pQZ076-4. The cfr-carrying plasmid pQZ076-1 could transfer from E. faecalis QZ076 to E. faecalis JH2-2, along with the cfr(D)- and poxtA2-cocarrying plasmid pQZ076-4, conferring the corresponding resistant phenotype to the recipient. Moreover, pQZ076-4 could also transfer to MRSA 109. To the best of our knowledge, this study presented the first report of four acquired linezolid resistance genes [optrA, cfr, cfr(D), and poxtA2] being simultaneously present in the same E. faecalis isolate. The location of the cfr gene on a pseudocompound transposon in a pheromone-responsive conjugative plasmid will accelerate its rapid dissemination. In addition, the cfr-carrying pheromone-responsive conjugative plasmid in E. faecalis was also able to mobilize the interspecies transfer of the cfr(D)- and poxtA2-cocarrying plasmid between enterococci and staphylococci. IMPORTANCE In this study, the simultaneous occurrence of four acquired oxazolidinone resistance genes [optrA, cfr, cfr(D), and poxtA2] was identified in an E. faecalis isolate of chicken origin. The association of the cfr gene with a novel pseudocompound transposon Tn7515 integrated into a pCF10-like pheromone-responsive conjugative plasmid will accelerate its dissemination. Moreover, the location of the resistance genes cfr(D) and poxtA2 on a mobilizable broad-host-range Inc18 family plasmid represents the basis for their intra- and interspecies dissemination with the aid of a conjugative plasmid and further accelerates the spreading of acquired oxazolidinone resistance genes, such as cfr, cfr(D), and poxtA2, among Gram-positive pathogens.


Gram-Positive Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Oxazolidinones , Animals , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/genetics , Chickens , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Chromosomes , Gram-Positive Bacterial Infections/epidemiology
8.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 132-148, 2023 Jan 25.
Article Zh | MEDLINE | ID: mdl-36738206

The bromodomain and extraterminal domain (Bet) family are the regulators of the epigenome and also the pivotal driving factors for the expression of tumor related genes that tumor cells depend on for survival and proliferation. Bromodomain-containing protein 4 (Brd4) is a member of the Bet protein family. Generally, Brd4 identifies acetylated histones and binds to the promoter or enhancer region of target genes to initiate and maintain expression of tumor related genes. Brd4 is closely related to the regulation of multiple transcription factors and chromatin modification and is involved in DNA damage repair and maintenance of telomere function, thus maintaining the survival of tumor cells. This review summarizes the structure and function of Brd4 protein and the application of its inhibitors in tumor research.


Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Histones , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neoplasms/metabolism , Protein Domains
9.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2079-2086, 2022 Jun 25.
Article Zh | MEDLINE | ID: mdl-35786463

CRISPR-Cas systems are well known gene editing tools, among which CRISPR-Cas9 system targeting DNA is the most well developed. Compared with CRISPR-Cas9 system, CRISPR-C2c2/ Cas13a system derived from TYPE VI of CRISPR family that can target RNA has attracted increasingly intense investigations in recent years. The CRISPR-Cas13a system is featured by specific recognition and binding of single stranded RNA sequences, thus playing a role in non-specific cleavage of RNA. This feature could be potentially applied to detect free nucleic acid in tumors or peripheral blood as a diagnostic approach. Since Cas13a specifically targets RNA, it can directly edit mRNA transcripts of genomic DNA to achieve the downregulation of target proteins without involving DNA editing. Therefore, Cas13a system could be used in tumor treatment. This review summarized the advances of using CRISPR-Cas13a for RNA targeting in tumor diagnosis and treatment, and prospected future applications.


CRISPR-Cas Systems , Neoplasms , CRISPR-Cas Systems/genetics , DNA , Gene Editing , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , RNA
10.
Front Microbiol ; 13: 842415, 2022.
Article En | MEDLINE | ID: mdl-35464976

Mycoplasma hominis, which is difficult to culture and identify by ordinary methods, is one of the smallest pathogens in the human genitourinary tract causing urogenital infections. A CRISPR-Cas12a-based detection system might provide a novel application for M. hominis nucleic acid detection in molecular diagnostics. A plasmid containing the glyceraldehyde-3-phosphate dehydrogenase gene of M. hominis (ATCC_27545) as the positive control was constructed by homologous recombination. The active Cas12a protein was purified by affinity chromatography. The primers for recombinase polymerase amplification (RPA), the CRISPR RNA (crRNA), and the ratio of Cas12a to crRNA were further optimized. Finally, the sensitivity, specificity, and clinical effectiveness of the Cas12a detection system were confirmed. We successfully constructed and optimized a novel nucleic acid detection system for M. hominis based on RPA-CRISPR-Cas12a, and the whole process takes only 1 h. The limit of detection for the gap gene of M. hominis was 3 copies/µl and no cross-reactivity with other urogenital pathogens appeared. In the evaluation of 111 clinical samples, the sensitivity and specificity were both 1.000 and the area under the curve of the receiver operating characteristic was 1.000 (p < 0.001), indicating that the RPA-Cas12a-fluorescent assay was fully comparable to the traditional culture method. Finally, the RPA-Cas12a detection system can also be combined with lateral flow strips (LFS) to achieve visual detection. We successfully developed a low-cost and rapid detection method of M. hominis based on RPA-Cas12a technology. This method realized by fluorescence value readout and visual detection by LFS could be applied in population screening and resource-limited conditions.

11.
Heart Lung ; 55: 16-23, 2022.
Article En | MEDLINE | ID: mdl-35436654

BACKGROUND: Non-coding RNA is confirmed to be involved in pulmonary arterial hypertension (PAH). OBJECTIVES: This study investigated the clinical value and potential mechanisms of the long noncoding RNA (lncRNA) SRY-box transcription factor 2 overlapping transcript (SOX2-OT) in PAH. METHODS: SOX2-OT levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) in serum of 82 patients with PAH and 76 healthy controls. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic value of SOX2-OT. Human pulmonary arterial smooth muscle cells (hPASMCs) were treated by hypoxia to construct PAH cell models. Proliferation, migration, apoptosis, and inflammatory cytokines levels of hPASMCs were examined by CCK-8, Transwell, flow cytometry, and ELISA assay. Dual-luciferase reporter gene assays were performed to verify the target relationships between miR-455-3p and SOX2-OT, as well as small ubiquitin-related modifier 1 (SUMO1). RESULTS: Serum SOX2-OT was highly expressed in patients with PAH (P < 0.05). And elevated SOX2-OT levels significantly differentiated PAH patients from healthy controls, confirming high diagnostic feasibility. What's more, SOX2-OT was increased in hypoxia-induced hPASMCs in a time-dependent manner. Silencing SOX2-OT could reverse hypoxia-induced proliferation, migration, anti-apoptosis, and inflammation of hPASMCs (P < 0.05). However, rescue experiments showed that this reversal effect of silencing SOX2-OT was attenuated by suppressed miR-455-3p, which was presumably achieved by SUMO1 (P < 0.05). CONCLUSIONS: Elevated SOX2-OT is a feasible diagnostic marker for PAH, and its silencing may attenuated hypoxia-induced hPASMCs proliferation, migration, anti-apoptosis, and inflammation by modulating the miR-455-3p/SUMO1 axis, preventing vascular remodeling and PAH progression. Our research provided new insights for PAH treatment.


MicroRNAs , Pulmonary Arterial Hypertension , RNA, Long Noncoding , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Familial Primary Pulmonary Hypertension , Humans , Hypoxia , Inflammation , MicroRNAs/genetics , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery , RNA, Long Noncoding/genetics , SOXB1 Transcription Factors
12.
Front Microbiol ; 13: 845259, 2022.
Article En | MEDLINE | ID: mdl-35401439

The parapoxvirus Orf virus (ORFV) has long been recognized as one of the valuable vectors in researches of oncolytic virus. In order to develop a potential therapeutic strategy for breast cancer based on the oncolytic virotherapy via ORFV, firstly we explore the oncolytic effects of ORFV. Our research showed that ORFV exerts anti-tumor effects in vitro by inducing breast cancer cell G2/M phase arrest and cell apoptosis. In vivo experiments were carried out, in which we treated 4T1 tumor-bearing BALB/C mice via intratumoral injection of ORFV. ORFV can exert anti-tumor activity by regulating tumor microenvironment (TME) and inducing a host immune response plus directly oncolytic effect. The CRISPR-Cas9 knockout library targeting 507 kinases was used to screen out PAK4, which is beneficial to the anti-tumor effect of ORFV on breast cancer cells. PF-3758309 is a potent PAK4-targeted inhibitor. Co-using of ORFV and PF-3758309 as a combination treatment produces its anti-tumor effects through inhibition of cell viability, induction of apoptosis and suppression of cell migration and invasion in vitro. The results of in vivo experiments showed that the tumor growth of mice in the combination treatment group was significantly inhibited, which proved that the combination treatment exerts an effective anti-tumor effect in vivo. In summary, we have clarified the oncolytic effect of ORFV on breast cancer, and found that the combination of ORFV and PAK4 inhibitor can effectively improve the oncolytic effect of ORFV. We hope our research could provide a new idea for the development of new treatment strategies for breast cancer.

13.
Life Sci ; 291: 120297, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35007565

AIMS: Orf virus (ORFV) is a parapoxvirus causing contagious ecthyma in sheep and goats. With inhibitory role of ORFV reported by previous studies, ORFV can be a candidate of oncolytic virus. However, few studies reported the application and mechanism of ORFV in nasopharyngeal carcinoma (NPC). We aimed to elucidate the anti-tumor mechanism of ORFV against NPC cells. MATERIALS AND METHODS: The anti-tumor effect of ORFV in NPC cells was confirmed by cell counting kit 8 (CCK-8) assay, flow cytometry and Western blot. In vitro and in vivo experiments were adopted to evaluate the inhibitory effect of ORFV in NPC cells. Western blot was used to determine the down-regulation of rapamycin (mTOR) signaling and autophagy enhancement induced by ORFV. To explore the mechanism of ORFV on NPC cells, mTOR signaling agonist and autophagy inhibitors were used to rescue the effects of ORFV. KEY FINDINGS: The results indicated that ORFV replicates in NPC cells, thus induces the apoptosis of NPC cells. Moreover, ORFV can effectively inhibit NPC cell growth in vivo. ORFV infection in NPC cells leads to the mTOR signaling inhibition and up-regulated autophagy, which might be the specific mechanism of ORFV in killing tumor cells. As to safety confirmation, normal nasopharyngeal epithelial cells NP69 are insensitive to ORFV. More importantly, ORFV would not cause organ damage in vivo. SIGNIFICANCES: Our data clarified that ORFV induces autophagy of NPC cells via inhibiting mTOR signaling, thus further inducing apoptosis. The anti-tumor role of ORFV might provide a preclinical strategy for NPC treatment.


Nasopharyngeal Carcinoma/metabolism , Orf virus/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , China , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/pathology , Oncolytic Viruses/metabolism , Orf virus/genetics , Parapoxvirus/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
14.
Nat Commun ; 13(1): 100, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-35013158

Developing a facile strategy for the construction of vinylene-linked fully π-conjugated covalent organic frameworks (COFs) remains a huge challenge. Here, a versatile condition of Knoevenagel polycondensation for constructing vinylene-linked 2D COFs was explored. Three new examples of vinylene-linked 2D COFs (BTH-1, 2, 3) containing benzobisthiazoles units as functional groups were successfully prepared under this versatile and mild condition. The electron-deficient benzobisthiazole units and cyano-vinylene linkages were both integrated into the π conjugated COFs skeleton and acted as acceptor moieties. Interestingly, we found the construction of a highly ordered and conjugated D-A system is favorable for photocatalytic activity. BTH-3 with benzotrithiophene as the donor with a strong D-A effect exhibited an attractive photocatalytic HER of 15.1 mmol h-1g-1 under visible light irradiation.

15.
Bioengineered ; 12(2): 11664-11676, 2021 12.
Article En | MEDLINE | ID: mdl-34872453

This investigation aimed to assess the levels of serum OIP5-AS1 and micro RNA-410-3p (miR-410-3p) in patients with chronic obstructive pulmonary disease (COPD) and their potential molecular mechanism. The levels of OIP5-AS1 and miR-410-3p as well as mRNA levels of IL-13 were measured. Pearson variable linear test was applied to analyze the correlations between forced expiratory volume in 1 second (FEV1) and OIP5-AS1. The receiver operating characteristic curve was used to predict the predictive possibility of OIP5-AS1. The viable cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry was used to detect the cell apoptosis. An enzyme-linked immunosorbent assay was performed to indicate the inflammatory situation of 16HBE cells. Luciferase activity assay was conducted to examine the relationships between OIP5-AS1 and miR-410-3p together with miR-410-3p and IL-13. Augmented levels of OIP5-AS1, declined levels of miR-410-3p, and enhanced expression of IL-13 were unveiled. The expression of OIP5-AS1 and miR-410-3p was related to the ratio of FEV1 respectively. OIP5-AS1 might serve as a diagnostic biomarker. Interference of OIP5-AS1 restored the abnormal cell viability, apoptosis, and inflammation in cigarette smoke extract (CSE)-stimulated 16HBE cells by regulating miR-410-3p and IL-13. OIP5-AS1 appeared to be a biomarker for distinguishing COPD patients from smokers. OIP5-AS1/miR-410-3p/IL-13 exerted function on the cell viability, apoptosis, and inflammation in CSE-steered cell models.


Interleukin-13/metabolism , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Long Noncoding/metabolism , Smoking/genetics , Base Sequence , Cell Line , Gene Expression Regulation , Humans , MicroRNAs/genetics , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
ACS Omega ; 6(37): 23782-23787, 2021 Sep 21.
Article En | MEDLINE | ID: mdl-34568658

Developing visible-light-active porous organic polymers with high photocatalytic efficiency is highly desirable. Here, two triazine-based conjugated microporous polymers were synthesized. The structures were controllably adjusted to explore the structure-photocatalytic activity relationship. T-CMP-1 containing more triazine units exhibited a hydrogen evolution rate of 3214.3 µmol h-1 g-1, much higher than that of T-CMP-2 (242.1 µmol h-1 g-1). The increasing contents of triazine units bring better hydrogen evolution efficiency.

17.
Stem Cell Res Ther ; 12(1): 358, 2021 06 21.
Article En | MEDLINE | ID: mdl-34154653

BACKGROUND: We show previously that three-dimensional (3D) spheroid cultured mesenchymal stem cells (MSCs) exhibit reduced cell size thus devoid of lung entrapment following intravenous (IV) infusion. In this study, we determined the therapeutic effect of 3D-cultured MSCs on ischemic stroke and investigated the mechanisms involved. METHODS: Rats underwent middle cerebral artery occlusion (MCAO) and reperfusion. 1 × 106 of 3D- or 2D-cultured MSCs, which were pre-labeled with GFP, were injected through the tail vain three and seven days after MCAO. Two days after infusion, MSC engraftment into the ischemic brain tissues was assessed by histological analysis for GFP-expressing cells, and infarct volume was determined by MRI. Microglia in the lesion were sorted and subjected to gene expressional analysis by RNA-seq. RESULTS: We found that infusion of 3D-cultured MSCs significantly reduced the infarct volume of the brain with increased engraftment of the cells into the ischemic tissue, compared to 2D-cultured MSCs. Accordingly, in the brain lesion of 3D MSC-treated animals, there were significantly reduced numbers of amoeboid microglia and decreased levels of proinflammatory cytokines, indicating attenuated activation of the microglia. RNA-seq of microglia derived from the lesions suggested that 3D-cultured MSCs decreased the response of microglia to the ischemic insult. Interestingly, we observed a decreased expression of mincle, a damage-associated molecular patterns (DAMPs) receptor, which induces the production of proinflammatory cytokines, suggestive of a potential mechanism in 3D MSC-mediated enhanced repair to ischemic stroke. CONCLUSIONS: Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation.


Brain Ischemia , Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Animals , Brain Ischemia/therapy , Cells, Cultured , Disease Models, Animal , Microglia , Rats , Stroke/therapy
18.
Chem Commun (Camb) ; 57(47): 5794-5797, 2021 Jun 10.
Article En | MEDLINE | ID: mdl-33998616

Inspired by the tessellation or tiling process in daily life, a rigid triangular macrocyclic molecule containing anthracene as a photo-active moiety was synthesized to realize pre-organization through π-π interactions. The successful preparation of a 2D polymer monolayer at the air/water interface was achieved through [4+4]-photocycloaddition.

19.
J Am Chem Soc ; 143(15): 5636-5642, 2021 Apr 21.
Article En | MEDLINE | ID: mdl-33848155

A two-dimensional polymer (2DP) single crystal (T-2DP) with submillimeter size was synthesized by single-crystal to single-crystal transformation based on photochemical [2 + 2]-cycloaddition. A successful conversion from monomer to polymer was achieved in the single-crystal state. The structure information with an atomic resolution of both the monomer and 2DP was given through single-crystal X-ray diffraction. By simply treated with trifluoroacetic acid (TFA) under mild conditions, an unprecedented efficiency of exfoliation was achieved. The triazine core in T-2DP could be protonated by TFA, which resulted in a solution-like sample with >60% of monolayers. The size of the exfoliated monolayer reaches to several hundreds of µm2. This is another precious example of 2DP single crystal with nearly perfect structure and large enough size. The successful preparation of the highly desirable 2DP "solution" for a long time containing large sized and large amount of 2DP monolayers may open up new prospects for the basic properties study and the applications of 2DPs.

20.
Oncol Rep ; 45(2): 535-546, 2021 02.
Article En | MEDLINE | ID: mdl-33416161

Orf virus (ORFV) is a favorable oncolytic viral carrier in research, and ORFV strain NZ2 has been revealed to have antitumor effects in animal models mediated by immunoregulation profile. However, the antitumor effects triggered by the ORFV in colorectal cancer (CRC) cells is poorly characterized. The in vivo and in vitro roles of ORFV in CRC were determined using western blotting, colony formation, CCK­8, wound scratch assay, qPCR, and animal models. Furthermore, cytokine antibody chip assay, flow cytometry, western blotting, and immunohistochemical (IHC) assays were conducted to explore the potential mechanism of ORFV. The present data revealed that ORFV strain NA1/11 infected and inhibited the in vitro growth and migration of CRC cells. By establishing a CRC model in Balb/c mice, it was revealed that ORFV strain NA1/11 significantly inhibited the in vivo growth and migration of CRC cells. A cytokine antibody array was utilized to obtain a more comprehensive profile revealing the differentially expressed cytokines in ORFV infection. Cytokines, such as IL­7, IL­13, IL­15, CD27, CD30, pentraxin 3, and B lymphocyte chemoattractant (BLC), were upregulated. Axl, CXCL16, ANG­3, MMP10, IFN­Î³ R1 and VEGF­B were downregulated. The results indicated that ORFV played roles in the regulation of key factors relevant to apoptosis, autoimmunity/inflammation, angiogenesis, and the cell cycle. Finally, data was presented to validate that ORFV infection induces oncolytic activity by enhancing apoptosis in vivo and in vitro. In conclusion, ORFV could be an oncolytic virus for CRC therapy.


Colorectal Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Orf virus/immunology , Animals , Apoptosis/immunology , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Humans , Male , Mice , Xenograft Model Antitumor Assays
...