Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Sci Data ; 11(1): 494, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744868

The standard of care for brain tumors is maximal safe surgical resection. Neuronavigation augments the surgeon's ability to achieve this but loses validity as surgery progresses due to brain shift. Moreover, gliomas are often indistinguishable from surrounding healthy brain tissue. Intraoperative magnetic resonance imaging (iMRI) and ultrasound (iUS) help visualize the tumor and brain shift. iUS is faster and easier to incorporate into surgical workflows but offers a lower contrast between tumorous and healthy tissues than iMRI. With the success of data-hungry Artificial Intelligence algorithms in medical image analysis, the benefits of sharing well-curated data cannot be overstated. To this end, we provide the largest publicly available MRI and iUS database of surgically treated brain tumors, including gliomas (n = 92), metastases (n = 11), and others (n = 11). This collection contains 369 preoperative MRI series, 320 3D iUS series, 301 iMRI series, and 356 segmentations collected from 114 consecutive patients at a single institution. This database is expected to help brain shift and image analysis research and neurosurgical training in interpreting iUS and iMRI.


Brain Neoplasms , Databases, Factual , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain/diagnostic imaging , Brain/surgery , Glioma/diagnostic imaging , Glioma/surgery , Ultrasonography , Neuronavigation/methods
2.
medRxiv ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-37745329

The standard of care for brain tumors is maximal safe surgical resection. Neuronavigation augments the surgeon's ability to achieve this but loses validity as surgery progresses due to brain shift. Moreover, gliomas are often indistinguishable from surrounding healthy brain tissue. Intraoperative magnetic resonance imaging (iMRI) and ultrasound (iUS) help visualize the tumor and brain shift. iUS is faster and easier to incorporate into surgical workflows but offers a lower contrast between tumorous and healthy tissues than iMRI. With the success of data-hungry Artificial Intelligence algorithms in medical image analysis, the benefits of sharing well-curated data cannot be overstated. To this end, we provide the largest publicly available MRI and iUS database of surgically treated brain tumors, including gliomas (n=92), metastases (n=11), and others (n=11). This collection contains 369 preoperative MRI series, 320 3D iUS series, 301 iMRI series, and 356 segmentations collected from 114 consecutive patients at a single institution. This database is expected to help brain shift and image analysis research and neurosurgical training in interpreting iUS and iMRI.

3.
Article En | MEDLINE | ID: mdl-37457380

This work presents a novel tool-free neuronavigation method that can be used with a single RGB commodity camera. Compared with freehand craniotomy placement methods, the proposed system is more intuitive and less error prone. The proposed method also has several advantages over standard neuronavigation platforms. First, it has a much lower cost, since it doesn't require the use of an optical tracking camera or electromagnetic field generator, which are typically the most expensive parts of a neuronavigation system, making it much more accessible. Second, it requires minimal setup, meaning that it can be performed at the bedside and in circumstances where using a standard neuronavigation system is impractical. Our system relies on machine-learning-based hand pose estimation that acts as a proxy for optical tool tracking, enabling a 3D-3D pre-operative to intra-operative registration. Qualitative assessment from clinical users showed that the concept is clinically relevant. Quantitative assessment showed that on average a target registration error (TRE) of 1.3cm can be achieved. Furthermore, the system is framework-agnostic, meaning that future improvements to hand-tracking frameworks would directly translate to a higher accuracy.

4.
Med Image Comput Comput Assist Interv ; 14228: 227-237, 2023 Oct.
Article En | MEDLINE | ID: mdl-38371724

We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations. Our method estimates the camera pose by minimizing the dissimilarity between the intraoperative 2D view through the optical microscope and the synthesized expected texture. In contrast to conventional methods, our approach transfers the processing tasks to the preoperative stage, reducing thereby the impact of low-resolution, distorted, and noisy intraoperative images, that often degrade the registration accuracy. We applied our method in the context of neuronavigation during brain surgery. We evaluated our approach on synthetic data and on retrospective data from 6 clinical cases. Our method outperformed state-of-the-art methods and achieved accuracies that met current clinical standards.

5.
Med Image Comput Comput Assist Interv ; 2023: 448-458, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-38655383

We introduce MHVAE, a deep hierarchical variational autoencoder (VAE) that synthesizes missing images from various modalities. Extending multi-modal VAEs with a hierarchical latent structure, we introduce a probabilistic formulation for fusing multi-modal images in a common latent representation while having the flexibility to handle incomplete image sets as input. Moreover, adversarial learning is employed to generate sharper images. Extensive experiments are performed on the challenging problem of joint intra-operative ultrasound (iUS) and Magnetic Resonance (MR) synthesis. Our model outperformed multi-modal VAEs, conditional GANs, and the current state-of-the-art unified method (ResViT) for synthesizing missing images, demonstrating the advantage of using a hierarchical latent representation and a principled probabilistic fusion operation. Our code is publicly available.

6.
Comput Med Imaging Graph ; 99: 102076, 2022 07.
Article En | MEDLINE | ID: mdl-35636377

PURPOSE: The purpose of this work is to present a new method for reconstructing patient-specific three-dimensional (3D) vasculature of the brain from a pair of digital subtraction angiography (DSA) image sequences from different viewpoints, e.g., from bi-plane angiography. Our long-term goal is to provide high resolution visualization of 3D vasculature with dynamic flow of contrast agent from limited data that is readily available during surgical procedures. The proposed method is the second of a three-stage process composed of 1) augmenting vessel segmentation with vessel radii and timing of the arrival of a bolus of contrast agent, 2) reconstructing a volumetric representation of the augmented vessel data from the augmented 2D segmentations, and 3) generating a 3D model of vessels and flow of contrast agent from the volumetric reconstruction. Unlike previous methods, which are either limited to relatively simple vessel structures or rely on multiple views and/or prior models of the vasculature, our method requires only a single pair of 2D DSA sequences taken from different view directions. METHODS: We developed a new mathematical algorithm that augments vessel centerlines with vessel radii and bolus arrival times derived directly from the 2D DSA sequences to constrain the 3D reconstruction. We validated this method on digital phantoms derived from clinical data and from fractal models of branching tree structures. RESULTS: In standard reconstruction methods, reconstruction by projection of two views into 3D space results in 'ghosting' artifacts, i.e., false 3D structure that occurs where vessels or vessel segments overlap in the 2D images. For the complex vascular of the brain, this ghosting is severe and is a major hurdle for methods that attempt to generate 3D structure from 2D images. We show that our approach reduces ghosting by up to 99% in digital phantoms derived from clinical data. CONCLUSION: Our dramatic reduction in ghosting artifacts in 3D reconstructions from a pair of 2D image sequences is an important step towards generating high resolution 3D vasculature with dynamic flow information from a single DSA sequence acquired using bi-plane angiography.


Contrast Media , Intracranial Aneurysm , Algorithms , Angiography, Digital Subtraction/methods , Artifacts , Humans , Imaging, Three-Dimensional/methods
7.
IEEE Trans Biomed Eng ; 69(4): 1310-1317, 2022 04.
Article En | MEDLINE | ID: mdl-34543188

OBJECTIVE: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. METHODS: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. RESULTS: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. CONCLUSION: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. SIGNIFICANCE: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.


Augmented Reality , Neurosurgery , Surgery, Computer-Assisted , Brain/diagnostic imaging , Brain/surgery , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Retrospective Studies , Surgery, Computer-Assisted/methods
8.
Article En | MEDLINE | ID: mdl-35321151

Digital Subtraction Angiography (DSA) provides high resolution image sequences of blood flow through arteries and veins and is considered the gold standard for visualizing cerebrovascular anatomy for neurovascular interventions. However, acquisition frame rates are typically limited to 1-3 fps to reduce radiation exposure, and thus DSA sequences often suffer from stroboscopic effects. We present the first approach that permits generating high frame rate DSA sequences from low frame rate acquisitions eliminating these artifacts without increasing the patient's exposure to radiation. Our approach synthesizes new intermediate frames using a phase-aware Convolutional Neural Network. This network accounts for the non-linear blood flow progression due to vessel geometry and initial velocity of the contrast agent. Our approach out-performs existing methods and was tested on several low frame rate DSA sequences of the human brain resulting in sequences of up to 17 fps with smooth and continuous contrast flow, free of flickering artifacts.

9.
Med Image Comput Comput Assist Interv ; 12264: 735-744, 2020 Oct.
Article En | MEDLINE | ID: mdl-33778818

Intra-operative brain shift is a well-known phenomenon that describes non-rigid deformation of brain tissues due to gravity and loss of cerebrospinal fluid among other phenomena. This has a negative influence on surgical outcome that is often based on pre-operative planning where the brain shift is not considered. We present a novel brain-shift aware Augmented Reality method to align pre-operative 3D data onto the deformed brain surface viewed through a surgical microscope. We formulate our non-rigid registration as a Shape-from-Template problem. A pre-operative 3D wire-like deformable model is registered onto a single 2D image of the cortical vessels, which is automatically segmented. This 3D/2D registration drives the underlying brain structures, such as tumors, and compensates for the brain shift in sub-cortical regions. We evaluated our approach on simulated and real data composed of 6 patients. It achieved good quantitative and qualitative results making it suitable for neurosurgical guidance.

10.
Article En | MEDLINE | ID: mdl-33840881

Brain shift is a non-rigid deformation of brain tissue that is affected by loss of cerebrospinal fluid, tissue manipulation and gravity among other phenomena. This deformation can negatively influence the outcome of a surgical procedure since surgical planning based on pre-operative image becomes less valid. We present a novel method to compensate for brain shift that maps preoperative image data to the deformed brain during intra-operative neurosurgical procedures and thus increases the likelihood of achieving a gross total resection while decreasing the risk to healthy tissue surrounding the tumor. Through a 3D/2D non-rigid registration process, a 3D articulated model derived from pre-operative imaging is aligned onto 2D images of the vessels viewed through the surgical miscroscopic intra-operatively. The articulated 3D vessels constrain a volumetric biomechanical model of the brain to propagate cortical vessel deformation to the parenchyma and in turn to the tumor. The 3D/2D non-rigid registration is performed using an energy minimization approach that satisfies both projective and physical constraints. Our method is evaluated on real and synthetic data of human brain showing both quantitative and qualitative results and exhibiting its particular suitability for real-time surgical guidance.

11.
Article En | MEDLINE | ID: mdl-34676151

During a craniotomy, the skull is opened to allow surgeons to have access to the brain and perform the procedure. The position and size of this opening are chosen in a way to avoid critical structures, such as vessels, and facilitate the access to tumors. Planning the operation is done based on pre-operative images and does not account for intra-operative surgical events. We present a novel image-guided neurosurgical system to optimize the craniotomy opening. Using physics-based modeling we define a cortical deformation map that estimates the displacement field at candidate craniotomy locations. This deformation map is coupled with an image analogy algorithm that produces realistic synthetic images that can be used to predict both the geometry and the appearance of the brain surface before opening the skull. These images account for cortical vessel deformations that may occur after opening the skull and is rendered in a way that increases the surgeon's understanding and assimilation. Our method was tested retrospectively on patients data showing good results and demonstrating the feasibility of practical use of our system.

12.
Int J Comput Assist Radiol Surg ; 12(3): 461-470, 2017 Mar.
Article En | MEDLINE | ID: mdl-27943043

PURPOSE: Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. METHODS: Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. RESULTS: Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). CONCLUSION: The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.


Depth Perception , Laparoscopy/methods , Surgery, Computer-Assisted/methods , Humans , Minimally Invasive Surgical Procedures/methods , Models, Anatomic
13.
Surg Endosc ; 31(7): 2863-2871, 2017 07.
Article En | MEDLINE | ID: mdl-27796600

BACKGROUND: Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. METHODS: Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. RESULTS: Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. CONCLUSIONS: Our preliminary experiments showed the potential of a biomechanical model with fluorescent fiducials to propagate the deformation of solid organs' surface to their inner structures including tumors with good accuracy and automatized robust tracking.


Fiducial Markers , Imaging, Three-Dimensional/methods , Kidney/surgery , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed , Virtual Reality , Animals , Biomechanical Phenomena , Finite Element Analysis , Fluorescent Dyes , In Vitro Techniques , Kidney/diagnostic imaging , Laparoscopy , Models, Anatomic , Neoplasms/diagnostic imaging , Neoplasms/surgery , Swine
14.
Ann Biomed Eng ; 44(1): 139-53, 2016 Jan.
Article En | MEDLINE | ID: mdl-26297341

During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data.


Liver/surgery , Minimally Invasive Surgical Procedures/methods , Models, Biological , Precision Medicine/methods , Female , Humans , Male
15.
IEEE Trans Vis Comput Graph ; 21(12): 1363-76, 2015 Dec.
Article En | MEDLINE | ID: mdl-26529459

This paper focuses on the 3D shape recovery and augmented reality on elastic objects with self-occlusions handling, using only single view images. Shape recovery from a monocular video sequence is an underconstrained problem and many approaches have been proposed to enforce constraints and resolve the ambiguities. State-of-the art solutions enforce smoothness or geometric constraints, consider specific deformation properties such as inextensibility or resort to shading constraints. However, few of them can handle properly large elastic deformations. We propose in this paper a real-time method that uses a mechanical model and able to handle highly elastic objects. The problem is formulated as an energy minimization problem accounting for a non-linear elastic model constrained by external image points acquired from a monocular camera. This method prevents us from formulating restrictive assumptions and specific constraint terms in the minimization. In addition, we propose to handle self-occluded regions thanks to the ability of mechanical models to provide appropriate predictions of the shape. Our method is compared to existing techniques with experiments conducted on computer-generated and real data that show the effectiveness of recovering and augmenting 3D elastic objects. Additionally, experiments in the context of minimally invasive liver surgery are also provided and results on deformations with the presence of self-occlusions are exposed.


Computer Graphics , Imaging, Three-Dimensional/methods , Models, Theoretical , Algorithms , Animals , Humans , Liver/surgery , Silicones , Surface Properties , Swine
16.
IEEE Trans Vis Comput Graph ; 21(5): 584-97, 2015 May.
Article En | MEDLINE | ID: mdl-26357206

This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.


Computer Graphics , Computer Simulation , Liver Neoplasms , Liver/surgery , Surgery, Computer-Assisted/education , Humans , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Phantoms, Imaging , User-Computer Interface
17.
Stud Health Technol Inform ; 184: 182-8, 2013.
Article En | MEDLINE | ID: mdl-23400153

In this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration.


Imaging, Three-Dimensional/methods , Laparoscopy/methods , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Models, Biological , Surgery, Computer-Assisted/methods , User-Computer Interface , Computer Simulation , Computer-Assisted Instruction/methods , Humans , Laparoscopy/education , Liver Neoplasms/physiopathology
...