Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Environ ; 39(2)2024.
Article in English | MEDLINE | ID: mdl-38825479

ABSTRACT

The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.


Subject(s)
Lakes , Seasons , Lakes/microbiology , Lakes/chemistry , Nitrites/metabolism , Nitrites/analysis , Ammonium Compounds/metabolism , Ammonium Compounds/analysis , Oxygen/metabolism , Oxygen/analysis , Ecosystem
2.
Sci Rep ; 11(1): 2982, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536606

ABSTRACT

To date, little is known about the ecological significance of Comammox (COMplete AMMonia OXidizers) Nitrospira in the water column of freshwater lakes. Water samples collected along depth profiles were used to investigate the distribution of Comammox in 13 lakes characterized by a wide range of physicochemical properties. Several published primers, which target the α-subunit of the ammonia monooxygenase, generated non-specific PCR products or did not amplify target genes from lake water and other habitats. Therefore, a new primer set has been designed for specific detection of Comammox in lakes. The high specificity of the PCR assay was confirmed by sequencing analysis. Quantification of Comammox amoA genes in lake water samples based on droplet digital PCR (ddPCR) revealed very low abundances (not exceeding 85 amoA copies ml-1), which suggest that Comammox is of minor importance for the nitrification process in the water column of the study sites. Surprisingly, samples taken from the sediment/water-interface along an oxygen gradient in dimictic Piburger See showed Comammox abundances three to four magnitudes higher than in the pelagic realm of the lake, which indicates a preference of Comammox to a particle-attached lifestyle.


Subject(s)
Ammonia/metabolism , Bacteria/isolation & purification , Ecological Parameter Monitoring/methods , Lakes/microbiology , Polymerase Chain Reaction/methods , Bacteria/enzymology , Bacteria/genetics , Genes, Bacterial/genetics , Geologic Sediments/microbiology , Nitrogen Cycle , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL