Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103644

ABSTRACT

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Subject(s)
Mutation , Sialyltransferases , Humans , Amino Acid Motifs/genetics , Amino Acid Substitution , Computer Simulation , Golgi Apparatus/enzymology , Golgi Apparatus/metabolism , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Point Mutation , Protein Conformation, beta-Strand , Protein Transport , Random Forest , Sialic Acids/metabolism , Sialyltransferases/chemistry , Sialyltransferases/genetics , Sialyltransferases/metabolism
2.
Glycoconj J ; 40(4): 461-471, 2023 08.
Article in English | MEDLINE | ID: mdl-37261680

ABSTRACT

Polysialic acid is an important glyco-epitope in vertebrate brains, while altered expressions of polySia and biosynthetic enzyme have been reported in brain diseases such as schizophrenia and depression. Recently, the binding between polySia and dopamine and the involvement of this in Akt signaling has been demonstrated. However, the molecular mechanism underlying the binding of polySia and dopamine remains unknown. Therefore, here, we demonstrated the interaction between dopamine and polySia using frontal affinity chromatography alongside docking simulations. In addition, we prepared dopamine-lead compounds to understand the detailed molecular basis of polySia binding by frontal affinity chromatography, enzyme-linked immunosorbent assay, and docking simulations.


Subject(s)
Dopamine , Sialic Acids , Sialic Acids/metabolism , Brain/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL