Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
J Exp Biol ; 227(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38690647

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Arousal , Choroid Plexus , Ependymoglial Cells , Hibernation , Proto-Oncogene Proteins c-fos , Torpor , Animals , Proto-Oncogene Proteins c-fos/metabolism , Arousal/physiology , Torpor/physiology , Hibernation/physiology , Ependymoglial Cells/metabolism , Ependymoglial Cells/physiology , Choroid Plexus/metabolism , Choroid Plexus/physiology , Mesocricetus , Male , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Cricetinae
2.
J Exp Biol ; 227(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38495024

Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals experience intermittent episodes of severe hypoxia, with diel patterning in dive depth and duration, it is interesting to consider circadian-mitochondrial interaction in this group. Here, we demonstrate that the hooded seal (Cystophora cristata), a deep-diving Arctic pinniped, shows strong daily patterning of diving behaviour in the wild. Cultures of hooded seal skin fibroblasts exhibit robust circadian oscillation of the core clock genes per2 and arntl. In liver tissue collected from captive hooded seals, expression of arntl was some 4-fold higher in the middle of the night than in the middle of the day. To explore the clock-mitochondria relationship, we measured the mitochondrial oxygen consumption in synchronized hooded seal skin fibroblasts and found a circadian variation in mitochondrial activity, with higher coupling efficiency of complex I coinciding with the trough of arntl expression. These results open the way for further studies of circadian-hypoxia interactions in pinnipeds during diving.


Caniformia , Seals, Earless , Animals , Brain/metabolism , ARNTL Transcription Factors/metabolism , Mammals/metabolism , Hypoxia/metabolism , Seals, Earless/physiology , Mitochondria/metabolism
3.
Curr Biol ; 34(3): 632-640.e6, 2024 02 05.
Article En | MEDLINE | ID: mdl-38218183

In mammals, maternal photoperiodic programming (MPP) provides a means whereby juvenile development can be matched to forthcoming seasonal environmental conditions.1,2,3,4 This phenomenon is driven by in utero effects of maternal melatonin5,6,7 on the production of thyrotropin (TSH) in the fetal pars tuberalis (PT) and consequent TSH receptor-mediated effects on tanycytes lining the 3rd ventricle of the mediobasal hypothalamus (MBH).8,9,10 Here we use LASER capture microdissection and transcriptomic profiling to show that TSH-dependent MPP controls the attributes of the ependymal region of the MBH in juvenile animals. In Siberian hamster pups gestated and raised on a long photoperiod (LP) and thereby committed to a fast trajectory for growth and reproductive maturation, the ependymal region is enriched for tanycytes bearing sensory cilia and receptors implicated in metabolic sensing. Contrastingly, in pups gestated and raised on short photoperiod (SP) and therefore following an over-wintering developmental trajectory with delayed sexual maturation, the ependymal region has fewer sensory tanycytes. Post-weaning transfer of SP-gestated pups to an intermediate photoperiod (IP), which accelerates reproductive maturation, results in a pronounced shift toward a ciliated tanycytic profile and formation of tanycytic processes. We suggest that tanycytic plasticity constitutes a mechanism to tailor metabolic development for extended survival in variable overwintering environments.


Ependymoglial Cells , Melatonin , Cricetinae , Animals , Ependymoglial Cells/metabolism , Seasons , Hypothalamus/metabolism , Circadian Rhythm , Phodopus/metabolism , Photoperiod , Thyrotropin/metabolism
4.
J Exp Biol ; 226(23)2023 12 01.
Article En | MEDLINE | ID: mdl-38031958

The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.


Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/physiology , Birds/physiology , Arctic Regions , Mammals , Seasons
5.
J Biol Rhythms ; 38(6): 586-600, 2023 12.
Article En | MEDLINE | ID: mdl-37565646

Seasonal mammals register photoperiodic changes through the photoneuroendocrine system enabling them to time seasonal changes in growth, metabolism, and reproduction. To a varying extent, proximate environmental factors like ambient temperature (Ta) modulate timing of seasonal changes in physiology, conferring adaptive flexibility. While the molecular photoneuroendocrine pathway governing the seasonal responses is well defined, the mechanistic integration of nonphotoperiodic modulatory cues is poorly understood. Here, we explored the interaction between Ta and photoperiod in tundra voles, Microtus oeconomus, a boreal species in which the main impact of photoperiod is on postnatal somatic growth. We demonstrate that postweaning growth potential depends on both gestational and postweaning patterns of photoperiodic exposure, with the highest growth potential seen in voles experiencing short (8 h) gestational and long (16 h) postweaning photoperiods-corresponding to a spring growth program. Modulation by Ta was asymmetric: low Ta (10 °C) enhanced the growth potential of voles gestated on short photoperiods independent of postweaning photoperiod exposure, whereas in voles gestated on long photoperiods, showing a lower autumn-programmed growth potential, the effect of Ta was highly dependent on postweaning photoperiod. Analysis of the primary molecular elements involved in the expression of a neuroendocrine response to photoperiod, thyrotropin beta subunit (tshß) in the pars tuberalis, somatostatin (srif) in the arcuate nucleus, and type 2/3 deiodinase (dio2/dio3) in the mediobasal hypothalamus identified dio2 as the most Ta-sensitive gene across the study, showing increased expression at higher Ta, while higher Ta reduced somatostatin expression. Contrastingly dio3 and tshß were largely insensitive to Ta. Overall, these observations reveal a complex interplay between Ta and photoperiodic control of postnatal growth in M. oeconomus, and suggest that integration of Ta into the control of growth occurs downstream of the primary photoperiodic response cascade revealing potential adaptivity of small herbivores facing rising temperatures at high latitudes.


Circadian Rhythm , Photoperiod , Animals , Seasons , Temperature , Arvicolinae , Somatostatin , Tundra
6.
J Neuroendocrinol ; 33(5): e12968, 2021 05.
Article En | MEDLINE | ID: mdl-33942392

Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and naturalist who was a seminal figure in developing our understanding of the neuroendocrine mechanisms underlying seasonal rhythmicity. This review considers his life and some of his major scientific contributions to our understanding of seasonality, photoperiodism and circannual rhythmicity. It is based on a presentation at the online 2nd annual seasonality symposium (2 October 2020) that was supported financially by the Journal of Neuroendocrinology.


Biology/history , Animals , History, 20th Century , History, 21st Century , Humans , Periodicity , Scotland
7.
Front Immunol ; 12: 669889, 2021.
Article En | MEDLINE | ID: mdl-34017342

Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.


Fish Proteins/genetics , Gene Expression Profiling , Gills/immunology , Salmo salar/genetics , Salmo salar/immunology , Single-Cell Analysis , Transcriptome , Animal Migration , Animals , Gene Expression Regulation , Gills/cytology , RNA-Seq , Salt Tolerance , Seawater
8.
Curr Biol ; 31(12): 2720-2727.e5, 2021 06 21.
Article En | MEDLINE | ID: mdl-33930302

The high Arctic archipelago of Svalbard (74°-81° north) experiences extended periods of uninterrupted daylight in summer and uninterrupted night in winter, apparently relaxing the major driver for the evolution of circadian rhythmicity. Svalbard ptarmigan (Lagopus muta hyperborea) is the only year-round resident terrestrial bird species endemic to the high Arctic and is remarkably adapted to the extreme annual variation in environmental conditions.1 Here, we demonstrate that, although circadian control of behavior disappears rapidly upon transfer to constant light conditions, consistent with the loss of daily activity patterns observed during the polar summer and polar night, Svalbard ptarmigans nonetheless employ a circadian-based mechanism for photoperiodic timekeeping. First, we show the persistence of rhythmic clock gene expression under constant light within the mediobasal hypothalamus and pars tuberalis, the key tissues in the seasonal neuroendocrine cascade. We then employ a "sliding skeleton photoperiod" protocol, revealing that the driving force behind seasonal biology of the Svalbard ptarmigan is rhythmic sensitivity to light, a feature that depends on a functioning circadian rhythm. Hence, the unusual selective pressures of life in the high Arctic have favored decoupling of the circadian clock from organization of daily activity patterns, while preserving its importance for seasonal synchronization.


Circadian Clocks , Photoperiod , Animals , Birds , Circadian Rhythm , Seasons , Svalbard
9.
FASEB J ; 35(5): e21605, 2021 05.
Article En | MEDLINE | ID: mdl-33913553

Global warming is predicted to have major effects on the annual time windows during which species may successfully reproduce. At the organismal level, climatic shifts engage with the control mechanism for reproductive seasonality. In mammals, laboratory studies on neuroendocrine mechanism emphasize photoperiod as a predictive cue, but this is based on a restricted group of species. In contrast, field-oriented comparative analyses demonstrate that proximate bioenergetic effects on the reproductive axis are a major determinant of seasonal reproductive timing. The interaction between proximate energetic and predictive photoperiodic cues is neglected. Here, we focused on photoperiodic modulation of postnatal reproductive development in common voles (Microtus arvalis), a herbivorous species in which a plastic timing of breeding is well documented. We demonstrate that temperature-dependent modulation of photoperiodic responses manifest in the thyrotrophin-sensitive tanycytes of the mediobasal hypothalamus. Here, the photoperiod-dependent expression of type 2 deiodinase expression, associated with the summer phenotype was enhanced by 21°C, whereas the photoperiod-dependent expression of type 3 deiodinase expression, associated with the winter phenotype, was enhanced by 10°C in spring voles. Increased levels of testosterone were found at 21°C, whereas somatic and gonadal growth were oppositely affected by temperature. The magnitude of these temperature effects was similar in voles photoperiodical programmed for accelerated maturation (ie, born early in the breeding season) and in voles photoperiodical programmed for delayed maturation (ie, born late in the breeding season). The melatonin-sensitive pars tuberalis was relatively insensitive to temperature. These data define a mechanistic hierarchy for the integration of predictive temporal cues and proximate thermo-energetic effects in mammalian reproduction.


Arvicolinae/physiology , Gonads/physiology , Photoperiod , Reproduction , Seasons , Temperature , Animals , Circadian Rhythm , Energy Metabolism , Female , Iodide Peroxidase , Male , Melatonin
10.
Front Physiol ; 12: 633866, 2021.
Article En | MEDLINE | ID: mdl-33762966

Organisms use circadian rhythms to anticipate and exploit daily environmental oscillations. While circadian rhythms are of clear importance for inhabitants of tropic and temperate latitudes, its role for permanent residents of the polar regions is less well understood. The high Arctic Svalbard ptarmigan shows behavioral rhythmicity in presence of light-dark cycles but is arrhythmic during the polar day and polar night. This has been suggested to be an adaptation to the unique light environment of the Arctic. In this study, we examined regulatory aspects of the circadian control system in the Svalbard ptarmigan by recording core body temperature (T b) alongside locomotor activity in captive birds under different photoperiods. We show that T b and activity are rhythmic with a 24-h period under short (SP; L:D 6:18) and long photoperiod (LP; L:D 16:8). Under constant light and constant darkness, rhythmicity in T b attenuates and activity shows signs of ultradian rhythmicity. Birds under SP also showed a rise in T b preceding the light-on signal and any rise in activity, which proves that the light-on signal can be anticipated, most likely by a circadian system.

11.
BMC Vet Res ; 17(1): 14, 2021 Jan 07.
Article En | MEDLINE | ID: mdl-33413328

BACKGROUND: Hibernation is a physiological and behavioural adaptation that permits survival during periods of reduced food availability and extreme environmental temperatures. This is achieved through cycles of metabolic depression and reduced body temperature (torpor) and rewarming (arousal). Rewarming from torpor is achieved through the activation of brown adipose tissue (BAT) associated with a rapid increase in ventilation frequency. Here, we studied the rate of rewarming in the European hamster (Cricetus cricetus) by measuring both BAT temperature, core body temperature and ventilation frequency. RESULTS: Temperature was monitored in parallel in the BAT (IPTT tags) and peritoneal cavity (iButtons) during hibernation torpor-arousal cycling. We found that increases in brown fat temperature preceded core body temperature rises by approximately 48 min, with a maximum re-warming rate of 20.9℃*h-1. Re-warming was accompanied by a significant increase in ventilation frequency. The rate of rewarming was slowed by the presence of a spontaneous thoracic mass in one of our animals. Core body temperature re-warming was reduced by 6.2℃*h-1 and BAT rewarming by 12℃*h-1. Ventilation frequency was increased by 77% during re-warming in the affected animal compared to a healthy animal. Inspection of the position and size of the mass indicated it was obstructing the lungs and heart. CONCLUSIONS: We have used a minimally invasive method to monitor BAT temperature during arousal from hibernation illustrating BAT re-warming significantly precedes core body temperature re-warming, informing future study design on arousal from hibernation. We also showed compromised re-warming from hibernation in an animal with a mass obstructing the lungs and heart, likely leading to inefficient ventilation and circulation.


Cricetinae/physiology , Hibernation/physiology , Monitoring, Physiologic/veterinary , Adipose Tissue, Brown/physiology , Animals , Arousal , Body Temperature , Monitoring, Physiologic/methods , Peritoneal Cavity , Respiratory Rate , Thorax/pathology
12.
PLoS Genet ; 16(10): e1009097, 2020 10.
Article En | MEDLINE | ID: mdl-33031398

Across taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called 'clock genes', collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes.


Circadian Clocks/genetics , Evolution, Molecular , Gene Duplication/genetics , Salmo salar/genetics , Animals , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Genome/genetics , Phylogeny
13.
J Exp Biol ; 223(Pt 20)2020 10 21.
Article En | MEDLINE | ID: mdl-32917818

To optimally time reproduction, seasonal mammals use a photoperiodic neuroendocrine system (PNES) that measures photoperiod and subsequently drives reproduction. To adapt to late spring arrival at northern latitudes, a lower photoperiodic sensitivity and therefore a higher critical photoperiod for reproductive onset is necessary in northern species to arrest reproductive development until spring onset. Temperature-photoperiod relationships, and hence food availability-photoperiod relationships, are highly latitude dependent. Therefore, we predict PNES sensitivity characteristics to be latitude dependent. Here, we investigated photoperiodic responses at different times during development in northern (tundra or root vole, Microtus oeconomus) and southern vole species (common vole, Microtus arvalis) exposed to constant short (SP) or long photoperiod (LP). Although the tundra vole grows faster under LP, no photoperiodic effect on somatic growth is observed in the common vole. In contrast, gonadal growth is more sensitive to photoperiod in the common vole, suggesting that photoperiodic responses in somatic and gonadal growth can be plastic, and might be regulated through different mechanisms. In both species, thyroid-stimulating hormone ß-subunit (Tshß) and iodothyronine deiodinase 2 (Dio2) expression is highly increased under LP, whereas Tshr and Dio3 decrease under LP. High Tshr levels in voles raised under SP may lead to increased sensitivity to increasing photoperiods later in life. The higher photoperiodic-induced Tshr response in tundra voles suggests that the northern vole species might be more sensitive to thyroid-stimulating hormone when raised under SP. In conclusion, species differences in developmental programming of the PNES, which is dependent on photoperiod early in development, may form different breeding strategies as part of latitudinal adaptation.


Arvicolinae , Photoperiod , Animals , Circadian Rhythm , Gonads , Seasons
14.
J Exp Biol ; 223(Pt 16)2020 08 21.
Article En | MEDLINE | ID: mdl-32587064

Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshß and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.


Circadian Rhythm , Photoperiod , Animals , Arctic Regions , Birds , Seasons , Svalbard
15.
J Exp Biol ; 223(Pt 6)2020 03 25.
Article En | MEDLINE | ID: mdl-32098881

MSM/Ms (MSM) is a mouse strain derived from Japanese wild mice, Mus musculus molossinus, that maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitary-hypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared with mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes and RFamide-related peptide (RFRP3) in the hypothalamus, and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied their offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar to that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.


Melatonin , Photoperiod , Animals , Circadian Rhythm , Gene Expression Regulation , Hypothalamus , Mice , Seasons , Thyroid Hormones
16.
J Exp Biol ; 2020 Jan 01.
Article En | MEDLINE | ID: mdl-34005441

Mus musculus molossinus (MSM) is a wild-derived mouse strain which maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitary-hypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared to mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes, RFamide-related peptide (RFRP3) in the hypothalamus and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero. Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.

17.
G3 (Bethesda) ; 9(10): 3225-3238, 2019 10 07.
Article En | MEDLINE | ID: mdl-31416806

The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR1C / GPR50), which exhibit distinct affinities, tissue distributions and signaling properties. We present phylogenetic and comparative genomic analyses supporting a revised classification of the vertebrate MTR family. We demonstrate four ancestral vertebrate MTRs, including a novel molecule hereafter named Mel1d. We reconstructed the evolution of each vertebrate MTR, detailing genetic losses in addition to gains resulting from whole genome duplication events in teleost fishes. We show that Mel1d was lost separately in mammals and birds and has been previously mistaken for an MT1 paralogue. The genetic and functional diversity of vertebrate MTRs is more complex than appreciated, with implications for our understanding of melatonin actions in different taxa. The significance of our findings, including the existence of Mel1d, are discussed in an evolutionary and functional context accommodating a robust phylogenetic assignment of MTR gene family structure.


Phylogeny , Receptors, Melatonin/classification , Receptors, Melatonin/genetics , Vertebrates/genetics , Animals , Evolution, Molecular , Genetic Linkage , Genome , Genomics/methods , Multigene Family , Sequence Analysis, DNA , Synteny
18.
PLoS Biol ; 17(7): e3000360, 2019 07.
Article En | MEDLINE | ID: mdl-31306430

The evidence that diel patterns of physiology and behaviour in mammals are governed by circadian 'clocks' is based almost entirely on studies of nocturnal rodents. The emergent circadian paradigm, however, neglects the roles of energy metabolism and alimentary function (feeding and digestion) as determinants of activity pattern. The temporal control of activity varies widely across taxa, and ungulates, microtine rodents, and insectivores provide examples in which circadian timekeeping is vestigial. The nocturnal rodent/human paradigm of circadian organisation is unhelpful when considering the broader manifestation of activity patterns in mammals.


Circadian Clocks/physiology , Circadian Rhythm/physiology , Energy Metabolism/physiology , Mammals/physiology , Animals , Biological Evolution , Humans , Mammals/classification , Mammals/metabolism , Rodentia/classification , Rodentia/metabolism , Rodentia/physiology , Species Specificity , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
19.
Article En | MEDLINE | ID: mdl-31998235

This mini-review considers the phenomenon of maternal photoperiodic programming (MPP). In order to match neonatal development to environmental conditions at the time of birth, mammals use melatonin produced by the maternal pineal gland as a transplacental signal representing ambient photoperiod. Melatonin acts via receptors in the fetal pituitary gland, exerting actions on the developing medio-basal hypothalamus. Within this structure, a central role for specialized ependymal cells known as tanycytes has emerged, linking melatonin to control of hypothalamic thyroid metabolism and in turn to pup development. This review summarizes current knowledge of this programming mechanism, and its relevance in an eco-evolutionary context. Maternal photoperiodic programming emerges as a useful paradigm for understanding how in utero programing of hypothalamic function leads to life-long effects on growth, reproduction, health and disease in mammals, including humans.

20.
Mar Genomics ; 31: 25-31, 2017 Feb.
Article En | MEDLINE | ID: mdl-27330039

The anadromous Atlantic salmon utilizes both fresh and salt water (FW and SW) habitats during its life cycle. The parr-smolt transformation (PST) is an important developmental transition from a FW adapted juvenile parr to a SW adapted smolt. Physiological changes in osmoregulatory tissues, particularly the gill, are key in maintaining effective ion regulation during PST. Changes are initiated prior to SW exposure (preparative phase), and are completed when smolts enter the sea (activational phase) where osmotic stress may directly stimulate changes in gene expression. In this paper we identify 4 nuclear factor of activated T cells (NFAT5, an osmotic stress transcription factor) paralogues in Atlantic salmon, which showed strong homology in characterized functional domains with those identified in other vertebrates. Two of the identified paralogues (NFAT5b1 and NFAT5b2) showed increased expression following transfer from FW to SW. This effect was largest in parr that were maintained under short day photoperiod, and showed the highest increases in chloride ion levels in response to SW exposure. The results of this study suggest that NFAT5 is involved in the osmotic stress response of Atlantic salmon.


Ecosystem , Fish Proteins/genetics , NFATC Transcription Factors/genetics , Osmoregulation/genetics , Salmo salar/physiology , Sodium Chloride/metabolism , Animals , Fish Proteins/metabolism , NFATC Transcription Factors/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmo salar/genetics , Sequence Analysis, DNA/veterinary
...