Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792055

ABSTRACT

The present study aimed to develop low-sodium curing agents for dry-cured meat products. Four low-sodium formulations (SPMA, SPM, SP, and SM) were used for dry-curing meat. The physicochemical properties and flavor of the dry-cured meat were investigated. The presence of Mg2+ ions hindered the penetration of Na+ into the meat. The weight loss, moisture content, and pH of all low-sodium salt groups were lower than those of S. Mg2+ addition increased the water activity (Aw) of SPMA, SPM, and SM. Dry-curing meat with low-sodium salts promoted the production of volatile flavor compounds, with Mg2+ playing a more prominent role. Furthermore, low-sodium salts also promoted protein degradation and increased the content of free amino acids in dry-cured meat, especially in SM. Principal component analysis (PCA) showed that the low-sodium salts containing Mg2+ were conducive to improving the quality of dry-cured meat products. Therefore, low-sodium salts enriched with Mg2+ become a desirable low-sodium curing agent for achieving salt reduction in dry-cured meat products.


Subject(s)
Magnesium , Meat Products , Meat Products/analysis , Magnesium/analysis , Magnesium/chemistry , Animals , Sodium/analysis , Sodium/chemistry , Salts/chemistry , Taste , Flavoring Agents/analysis , Flavoring Agents/chemistry , Hydrogen-Ion Concentration , Amino Acids/analysis , Amino Acids/chemistry , Food Handling/methods
2.
Carbohydr Polym ; 330: 121882, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368089

ABSTRACT

Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.


Subject(s)
Colitis , Galactans , Lycium , Mice , Animals , Mucins/metabolism , Lycium/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Polysaccharides/adverse effects , Bacteria/metabolism , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...