Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Neurol ; 381: 114926, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153685

ABSTRACT

Cognitive decline in Parkinson's Disease (PD) is a prevalent and undertreated aspect of disease. Currently, no therapeutics adequately improve this aspect of disease. It has been previously shown that MAS receptor agonism via the glycosylated Angiotensin (1-7) peptide, PNA5, effectively reduces cognitive decline in models of vascular contributions to cognitive impairment and dementia (VCID). PNA5 has a brain/plasma ratio of 0.255 indicating good brain penetration. The goal of the present study was to determine if (1) systemic administration of PNA5 rescued cognitive decline in a mouse model of PD, and (2) if improvements in cognitive status could be correlated with changes to histopathological or blood plasma-based changes. Mice over-expressing human, wild-type α-synuclein (αSyn) under the Thy1 promoter (Thy1-αSyn mice, "line 61") were used as a model of PD with cognitive decline. Thy1-αSyn mice were treated with a systemic dose of PNA5, or saline (1 mg/kg/day) beginning at 4 months of age and underwent behavioral testing at 6 months, compared to WT. Subsequently, mice brains were analyzed for changes to brain pathology, and blood plasma was examined with a Multiplex Immunoassay for peripheral cytokine changes. Treatment with PNA5 reversed cognitive dysfunction measured by Novel Object Recognition and spontaneous alteration in a Y-maze in Thy1-αSyn mice. PNA5 treatment was specific to cognitive deficits, as fine-motor disturbances were unchanged. Enhanced cognition was associated with decreases in hippocampal inflammation and reductions in circulating levels of Macrophage Induced Protein (MIP-1ß). Additionally, neuronal loss was blunted within the CA3 hippocampal region of PNA5-treated αsyn mice. These data reveal that PNA5 treatment reduces cognitive dysfunction in a mouse model of PD. These changes are associated with decreased MIP-1ß levels in plasma identifying a candidate biomarker for target engagement. Thus, PNA5 treatment could potentially fill the therapeutic gap for cognitive decline in PD.


Subject(s)
Angiotensin I , Cognitive Dysfunction , Neuroinflammatory Diseases , Parkinson Disease , Peptide Fragments , Animals , Mice , Neuroinflammatory Diseases/drug therapy , Parkinson Disease/drug therapy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Mice, Transgenic , Disease Models, Animal , Male , Cognition/drug effects , alpha-Synuclein/metabolism , Humans , Mice, Inbred C57BL , Disease Progression
2.
ACS Chem Neurosci ; 15(14): 2643-2653, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958080

ABSTRACT

Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.


Subject(s)
Dopamine , Electric Stimulation , Medial Forebrain Bundle , Nucleus Accumbens , Prefrontal Cortex , Rats, Sprague-Dawley , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Dopamine/metabolism , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Medial Forebrain Bundle/physiology , Male , Electric Stimulation/methods , Rats , Time Factors
3.
Neuropharmacology ; 257: 110047, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38889877

ABSTRACT

Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system. In this report, we provide detailed pharmacokinetic rodent data on ketamine and its main metabolites following an intraperitoneal injection, and second, we explore the pharmacodynamic properties of ketamine in a rodent PD model with respect to the opioid system, using naloxone, a pan-opioid receptor antagonist, in unilateral 6-hydroxydopamine-lesioned male rats, treated with 6 mg/kg levodopa (l-DOPA) to establish a model of l-DOPA-induced dyskinesia (LID). As previously reported, we showed that ketamine (20 mg/kg) is highly efficacious in reducing LID and now report that the magnitude of this effect is resistant to naloxone (3 and 5 mg/kg). The higher naloxone dose of 5 mg/kg, however, led to an extension of the time-course of the LID, indicating that opioid receptor activation, while not a prerequisite for the anti-dyskinetic effects of ketamine, still exerts an acute modulatory effect. In contrast to the mild modulatory effect on LID, we found that naloxone added to the anti-parkinsonian activity of ketamine, further reducing the akinetic phenotype. In conclusion, our data show opioid receptor blockade differentially modulates the acute anti-parkinsonian and anti-dyskinetic actions of ketamine, providing novel mechanistic information to support repurposing ketamine for individuals with LID.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Ketamine , Levodopa , Narcotic Antagonists , Oxidopamine , Ketamine/pharmacology , Animals , Male , Dyskinesia, Drug-Induced/drug therapy , Rats , Levodopa/pharmacology , Antiparkinson Agents/pharmacology , Narcotic Antagonists/pharmacology , Oxidopamine/toxicity , Naloxone/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal
4.
ACS Med Chem Lett ; 14(2): 163-170, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793431

ABSTRACT

Acute and chronic pain is often treated with opioids despite the negative side effects of constipation, physical dependence, respiratory depression, and overdose. The misuse of opioid analgesics has given rise to the opioid crisis/epidemic, and alternate nonaddictive analgesics are urgently needed. Oxytocin, a pituitary hormone, is an alternative to the small molecule treatments available and has been used as an analgesic as well as for the treatment and prevention of opioid use disorder (OUD). Clinical implementation is limited by its poor pharmacokinetic profile, a result of the labile disulfide bond between two cysteine residues in the native sequence. Stable brain penetrant oxytocin analogues have been synthesized by replacement of the disulfide bond with a stable lactam and glycosidation of the C-terminus. These analogues show exquisite selectivity for the oxytocin receptor and potent in vivo antinociception in mice following peripheral (i.v.) administration, supporting further study of their clinical potential.

SELECTION OF CITATIONS
SEARCH DETAIL