Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Horm Res Paediatr ; 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37844556

Objectives - Angelman syndrome (AS) is a rare, genetic, neurodevelopmental disorder characterized by severe impairments in speech, cognition and motor skills accompanied by unique behaviors, distinct facial features and high prevalence of epilepsy and sleep problems. Despite some reports of short stature among AS patients, this feature is not included in the clinical criteria defined in 2005. We investigated growth patterns among AS patients with respect to mutation type, growth periods, family history and endocrine abnormalities. Methods - Data was collected from patients' medical files in AS national clinic. Mutation subtypes were divided to deletion and non-deletion. Four growth periods were defined: preschool, childhood, peak-height velocity, and final-height. Results - The cohort included 88 individuals (46 males), with 54 (61.4%) carrying deletion subtype. A median of 3 observations per individual , produced 280 data points. Final-height-SDS was significantly lower compared to general population (-1.23±1.26, p<0.001), and in deletion group vs. non-deletion (-1.67±1.3 vs. -0.65±0.96, p=0.03). Final-height-SDS was significantly lower compared to height-SDS in preschool period (-1.32 vs -0.47, p=0.007). Patient's final-height-SDS was significantly lower than the parents' (∆final-height-SDS=0.94±0.99, p=0.002). IGF1-SDS was significantly decreased compared to general population (-0.55±1.61, p=0.04), with lower values among deletion group (-0.70±1.44, p=0.01) Conclusions - AS patients demonstrate specific growth pattern with deceleration during childhood and adolescence resulting in significantly decreased final height compared to normal population, and even lower among deletion subgroup, which could be attributed to reduced IGF1 levels. We propose adding short stature to the clinical criteria and developing adjusted growth curves for AS population.

2.
Eur J Paediatr Neurol ; 47: 6-12, 2023 Nov.
Article En | MEDLINE | ID: mdl-37639777

PURPOSE: To evaluate efficacy and safety of gaboxadol for treatment of children with Angelman syndrome (AS). METHOD: In this international, double-blind, phase 3 trial, we randomized children 4-12 years old with a molecular diagnosis of AS and a Clinical Global Impression (CGI)-severity score ≥3 to either daily administration of weight-based gaboxadol or matching placebo for 12 weeks. The primary endpoint was the CGI-Improvement-AS (CGI-I-AS) score at week 12. Secondary endpoints included the proportion of participants with CGI-I-AS response of ≤3 (i.e., at least "minimal improvement") and ≤2 (i.e., at least "much improvement") at week 12. Safety and tolerability were monitored throughout the study. Weight based dosing of study drug ranged from 0.125 mg/kg to 0.24 mg/kg depending on weight range. RESULTS: Between August 2019 and November 2020, 104 participants were enrolled: participants 4-12 years old were randomly (1:1) assigned to gaboxadol (n = 47) or placebo (n = 50), and 7 other participants 2─3 years old who received gaboxadol and were assessed for safety only. All gaboxadol-treated participants and 48 of 50 placebo-treated participants completed treatment. There was no significant difference in CGI-I-AS between groups: at week 12, mean CGI-I-AS score was 3.3 (SD, 1.00) and 3.2 (SD, 1.05) in the gaboxadol and placebo groups, respectively, yielding a least squares mean difference of zero (p = 0.83). There were no between-group significant differences with respect to CGI-I-AS responses. Gaboxadol was well tolerated in all age groups of this study. CONCLUSIONS: There was no significant difference in CGI-I-AS between gaboxadol and placebo after 12 weeks of study treatment in pediatric AS participants. CLINICALTRIALS: GOV: NCT04106557.


Angelman Syndrome , Child , Child, Preschool , Humans , Angelman Syndrome/drug therapy , Double-Blind Method , Isoxazoles/adverse effects , Isoxazoles/therapeutic use , Treatment Outcome
3.
Nat Metab ; 5(9): 1595-1614, 2023 09.
Article En | MEDLINE | ID: mdl-37653044

In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.


Adipogenesis , Mitochondria , Child , Animals , Humans , Ceramides , Drosophila , Iron , Fatty Acids
4.
Epilepsia ; 64(4): 866-874, 2023 04.
Article En | MEDLINE | ID: mdl-36734057

OBJECTIVE: Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS: This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS: A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission.


Epilepsies, Partial , Epilepsy , Child , Humans , Epilepsies, Partial/drug therapy , Anticonvulsants/adverse effects , Retrospective Studies , Treatment Outcome , Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy/chemically induced , Seizures/drug therapy , Pyridones/adverse effects , Glutamic Acid , Protocadherins , GTP-Binding Protein alpha Subunits, Gi-Go
5.
Front Neurol ; 13: 979725, 2022.
Article En | MEDLINE | ID: mdl-36203978

Introduction: Concerns regarding felbamate adverse effects restrict its widespread use in children with drug-resistant epilepsy. We aimed to examine the efficacy and safety of felbamate in those children and identify the ones who may benefit most from its use. Methods: We retrospectively reviewed the medical files of all patients who were treated with felbamate in a tertiary pediatric epilepsy clinic between 2009-2021. Drug efficacy was determined at the first 3 months of treatment and thereafter. Therapeutic response and adverse reactions were monitored throughout the course of treatment. Results: Our study included 75 children (age 8.9 ± 3.7 years), of whom 53 were treated with felbamate for seizures, 16 for electrical status epilepticus during sleep and 6 for both. The median follow-up time was 16 months (range 1-129 months). The most common cause for epilepsy was genetic (29%). The median number of previous anti-seizure medications was six [4-8]. A therapeutic response ≥50% was documented in 37 (51%) patients, and a complete response in 9 (12%). Nineteen patients (25%) sustained adverse reactions, including three cases of elevated liver enzymes and one case of neutropenia with normal bone marrow aspiration. In all cases, treatment could be continued. All children with intractable epilepsy following herpes encephalitis showed a response to felbamate. Conclusion: Felbamate is an efficacious and safe anti-seizure medication in the pediatric population.

6.
Pediatr Neurol ; 136: 15-19, 2022 11.
Article En | MEDLINE | ID: mdl-36049378

BACKGROUND: Several retrospective studies on pediatric epilepsy reported positive effects of cannabidiol-enriched artisanal cannabis oil and pure cannabidiol oil on seizure reduction. METHODS: This is a retrospective study of children and adolescents with refractory epilepsy caused by various etiologies who were treated with artisanal cannabis oil during January 2014 to June 2019, with at least one year follow-up. RESULTS: Of 114 patients, 84 (73.3%) reported some improvement in seizure frequency at some point during treatment. Fifty-one (59%) of the 86 patients who continued treatment for at least one year showed >50% improvement in seizure frequency. Seizure etiology, seizure type, and patients' age and sex were not found to be associated with the response to cannabidiol-enriched cannabis oil. Side effects were minor, and positive effects beyond seizure reduction were noted. CONCLUSIONS: Artisanal cannabidiol-enriched cannabis may be an effective and safe long-term treatment for refractory epilepsy.


Cannabidiol , Cannabis , Drug Resistant Epilepsy , Epilepsy , Adolescent , Anticonvulsants/adverse effects , Cannabidiol/adverse effects , Child , Drug Resistant Epilepsy/drug therapy , Epilepsy/drug therapy , Humans , Retrospective Studies , Seizures/drug therapy
7.
Neurology ; 98(20): e2046-e2059, 2022 05 17.
Article En | MEDLINE | ID: mdl-35314505

BACKGROUND AND OBJECTIVES: KCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants. METHODS: Individuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes. RESULTS: We identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms. DISCUSSION: These findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability.


Epilepsy, Generalized , Epilepsy , Epilepsy/genetics , Epilepsy, Generalized/genetics , Humans , Phenotype , Seizures/genetics , Shaw Potassium Channels/genetics , Exome Sequencing
8.
Front Genet ; 13: 1018062, 2022.
Article En | MEDLINE | ID: mdl-36699461

Background: Genetic conditions contribute a significant portion of disease etiologies in children admitted to general pediatric wards worldwide. While exome sequencing (ES) has improved clinical diagnosis and management over a variety of pediatric subspecialties, it is not yet routinely used by general pediatric hospitalists. We aim to investigate the impact of exome sequencing in sequencing-naive children suspected of having monogenic disorders while receiving inpatient care. Methods: We prospectively employed exome sequencing in children admitted to the general pediatric inpatient service at a large tertiary medical center in Israel. Genetic analysis was triggered by general and/or subspecialist pediatricians who were part of the primary inpatient team. We determined the diagnostic yield among children who were referred for exome sequencing and observed the effects of genetic diagnosis on medical care. Results: A total of fifty probands were evaluated and exome sequenced during the study period. The most common phenotypes included were neurodevelopmental (56%), gastrointestinal (34%), and congenital cardiac anomalies (24%). A molecular diagnosis was reached in 38% of patients. Among seven patients (37%), the molecular genetic diagnosis influenced subsequent clinical management already during admission or shortly following discharge. Conclusion: We identified a significant fraction of genetic etiologies among undiagnosed children admitted to the general pediatric ward. Our results support that early application of exome sequencing may be maximized by pediatric hospitalists' high index of suspicion for an underlying genetic etiology, prompting an in-house genetic evaluation. This framework should include a multidisciplinary co-management approach of the primary care team working alongside with subspecialties, geneticists and bioinformaticians.

9.
Sci Rep ; 11(1): 19099, 2021 09 27.
Article En | MEDLINE | ID: mdl-34580403

Exome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018-2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.


Abnormalities, Multiple/diagnosis , Exome Sequencing/economics , Financing, Government , Genetic Testing/economics , Neurodevelopmental Disorders/diagnosis , Abnormalities, Multiple/economics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Cost-Benefit Analysis , Feasibility Studies , Female , Genetic Counseling/economics , Genetic Counseling/methods , Genetic Counseling/statistics & numerical data , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Humans , Infant , Infant, Newborn , Israel , Male , Maternal Age , Neurodevelopmental Disorders/economics , Neurodevelopmental Disorders/genetics , Paternal Age , Pregnancy , Prenatal Diagnosis/economics , Prenatal Diagnosis/methods , Program Evaluation , Retrospective Studies , Tertiary Care Centers/economics , Tertiary Care Centers/statistics & numerical data , Exome Sequencing/statistics & numerical data , Young Adult
10.
Epileptic Disord ; 23(5): 695-705, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34519644

Mutations in the KCNQ2 gene, encoding the voltage-gated potassium channel, Kv7.2, cause neonatal epilepsies. The potassium channel opener, retigabine, may improve epilepsy control in cases with loss-of-function mutations, but exacerbate seizures in cases with gain-of-function mutations. Our aim was to describe a patient with a KCNQ2 mutation within the K+-selectivity filter and illustrate how electrophysiological analysis helped us to implement personalized treatment. Medical history of a patient with severe neonatal epileptic encephalopathy was recorded. Diagnosis was reached by whole-exome-sequencing. The pathogenic variant was expressed in Chinese hamster ovary cells, and patch-clamp studies were performed, directing therapy. A seven-year-old male presented with neonatal seizures, progressing to hundreds of seizures/day without developmental milestones. Whole-exome sequencing revealed a pathogenic variant, p.Gly281Arg, in the KCNQ2 gene, located within the ion selectivity filter of the pore, predicted to cause loss-of-function of Kv7.2, not affected by retigabine. Patch-clamp analysis revealed no current with the mutant homomer and reduced current with heterotetramer (KCNQ2WT/KCNQ2G281R/KCNQ3WT) channels, consistent with a dominant-negative effect. Addition of 5 µM retigabine did not produce a current with the mutant homomer, but increased current with the heterotetramer (V50: -30.4 mV vs. -51.3 mV). Following these results, retigabine at 15 mg/kg was administered off-label, prompting a 90% seizure reduction. Drug withdrawal, imposed by revocation of marketing authorisation for retigabine, caused 50% increase in seizure burden. Retigabine may be used for precision therapy in patients with KCNQ2-related epilepsy due to loss-of-function variants. It is imperative to reintroduce safe marketing of retigabine for selected patients as personalized treatment.


Epilepsy , Animals , Brain Diseases , CHO Cells , Carbamates , Child , Cricetinae , Cricetulus , Humans , KCNQ2 Potassium Channel/genetics , Male , Phenylenediamines , Precision Medicine , Seizures
11.
Hum Mutat ; 42(6): 762-776, 2021 06.
Article En | MEDLINE | ID: mdl-33847017

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.


Carrier Proteins/genetics , Hereditary Sensory and Autonomic Neuropathies , Intellectual Disability , Nerve Tissue Proteins/genetics , Adolescent , Carrier Proteins/chemistry , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Family , Female , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Magnetic Resonance Imaging , Male , Models, Molecular , Mutation, Missense , Nerve Tissue Proteins/chemistry , Neuroimaging/methods , Pedigree , Phenotype , Protein Conformation
12.
Eur J Paediatr Neurol ; 32: 40-45, 2021 May.
Article En | MEDLINE | ID: mdl-33756211

BACKGROUND: and Purpose: Postnatal progressive microcephaly, with seizures and brain atrophy (OMIM # 613668) is a rare disorder caused by a homozygous founder missense mutation c.1112T>C (p.L371P) in the MED17 gene on chromosome 11 that was identified in 2010 in Caucasus Jewish families. The present study aimed to delineate the phenotype and developmental outcomes in patients diagnosed with this mutation to date. METHODS: We conducted a medical charts review to collect the clinical, laboratory and neuroimaging findings in patients from several unrelated families of Caucasus-Jewish origin, who were diagnosed with the same homozygous c.1112T>C MED17 mutation. RESULTS: The study cohort, including the previously reported patients, comprised 10 males and 5 females from 11 families. All subjects had at birth a normal head circumference, which steeply declined to -6SD within a few months. None of the patients achieved developmental milestones. All patients had progressive spasticity and were wheelchair bound due to spastic quadriplegia. All of them eventually developed profound intellectual disability. Epilepsy of varied severity was present in all patients. Most patients required enteral feeding due to aspirations. Eight patients died before puberty (age range 2-13 years). Brain MRI showed marked cerebral atrophy and early prominent cerebellar atrophy (vermian > hemispheres) accompanied by pontine ventral flattening. CONCLUSIONS: The founder c.1112T>C mutation in MED17 gene is expressed by a unique and homogeneous clinical phenotype with distinctive MRI findings. This mutation should be considered in patients of Caucasus-Jewish ancestry presenting with clinical features and a MRI pattern of progressive cerebral and cerebellar atrophy.


Brain/pathology , Jews/genetics , Mediator Complex/genetics , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Adolescent , Atrophy/genetics , Child , Child, Preschool , Epilepsy/genetics , Female , Homozygote , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Mutation, Missense , Phenotype
13.
Neurology ; 96(7): e1024-e1035, 2021 02 16.
Article En | MEDLINE | ID: mdl-33443117

OBJECTIVE: To evaluate safety and tolerability and exploratory efficacy end points for gaboxadol (OV101) compared with placebo in individuals with Angelman syndrome (AS). METHODS: Gaboxadol is a highly selective orthosteric agonist that activates δ-subunit-containing extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. In a multicenter, double-blind, placebo-controlled, parallel-group trial, adolescent and adult individuals with a molecular diagnosis of AS were randomized (1:1:1) to 1 of 3 dosing regimens for a duration of 12 weeks: placebo morning dose and gaboxadol 15 mg evening dose (qd), gaboxadol 10 mg morning dose and 15 mg evening dose (bid), or placebo morning and evening dose. Safety and tolerability were monitored throughout the study. Prespecified exploratory efficacy end points included adapted Clinical Global Impression-Severity and Clinical Global Impression-Improvement (CGI-I) scales, which documented the clinical severity at baseline and change after treatment, respectively. RESULTS: Eighty-eight individuals were randomized. Of 87 individuals (aged 13-45 years) who received at least 1 dose of study drug, 78 (90%) completed the study. Most adverse events (AEs) were mild to moderate, and no life-threatening AEs were reported. Efficacy of gaboxadol, as measured by CGI-I improvement in an exploratory analysis, was observed in gaboxadol qd vs placebo (p = 0.0006). CONCLUSION: After 12 weeks of treatment, gaboxadol was found to be generally well-tolerated with a favorable safety profile. The efficacy as measured by the AS-adapted CGI-I scale warrants further studies. CLINICALTRIALSGOV IDENTIFIER: NCT02996305. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that, for individuals with AS, gaboxadol is generally safe and well-tolerated.


Angelman Syndrome/drug therapy , GABA Agonists/administration & dosage , Isoxazoles/administration & dosage , Adolescent , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Humans , Isoxazoles/adverse effects , Male , Middle Aged , Treatment Outcome , Young Adult
14.
J Neurodev Disord ; 13(1): 3, 2021 01 04.
Article En | MEDLINE | ID: mdl-33397286

BACKGROUND: The Clinical Global Impression-Severity (CGI-S) and CGI-Improvement (CGI-I) scales are widely accepted tools that measure overall disease severity and change, synthesizing the clinician's impression of the global state of an individual. Frequently employed in clinical trials for neuropsychiatric disorders, the CGI scales are typically used in conjunction with disease-specific rating scales. When no disease-specific rating scale is available, the CGI scales can be adapted to reflect the specific symptom domains that are relevant to the disorder. Angelman syndrome (AS) is a rare, clinically heterogeneous condition for which there is no disease-specific rating scale. This paper describes efforts to develop standardized, adapted CGI scales specific to AS for use in clinical trials. METHODS: In order to develop adapted CGI scales specific to AS, we (1) reviewed literature and interviewed caregivers and clinicians to determine the most impactful symptoms, (2) engaged expert panels to define and operationalize the symptom domains identified, (3) developed detailed rating anchors for each domain and for global severity and improvement ratings, (4) reviewed the anchors with expert clinicians and established minimally clinically meaningful change for each symptom domain, and (5) generated mock patient vignettes to test the reliability of the resulting scales and to standardize rater training. This systematic approach to developing, validating, and training raters on a standardized, adapted CGI scale specifically for AS is described herein. RESULTS: The resulting CGI-S/I-AS scales capture six critical domains (behavior, gross and fine motor function, expressive and receptive communication, and sleep) defined by caregivers and expert clinicians as the most challenging for patients with AS and their families. CONCLUSIONS: Rigorous training and careful calibration for clinicians will allow the CGI-S/-I-AS scales to be reliable in the context of randomized controlled trials. The CGI-S/-I-AS scales are being utilized in a Phase 3 trial of gaboxadol for the treatment of AS.


Angelman Syndrome , Caregivers , Humans , Reproducibility of Results , Severity of Illness Index
15.
Eur J Paediatr Neurol ; 30: 144-154, 2021 Jan.
Article En | MEDLINE | ID: mdl-33349592

BACKGROUND: CACNA1A-related disorders present with persistent progressive and non-progressive cerebellar ataxia and paroxysmal events: epileptic seizures and non-epileptic attacks. These phenotypes overlap and co-exist in the majority of patients. OBJECTIVE: To describe phenotypes in infantile onset CACNA1A-related disorder and to explore intra-familial variations and genotype-phenotype correlations. MATERIAL AND METHODS: This study was a multicenter international collaboration. A retrospective chart review of CACNA1A patients was performed. Clinical, radiological, and genetic data were collected and analyzed in 47 patients with infantile-onset disorder. RESULTS: Paroxysmal non-epileptic events (PNEE) were observed in 68% of infants, with paroxysmal tonic upward gaze (PTU) noticed in 47% of infants. Congenital cerebellar ataxia (CCA) was diagnosed in 51% of patients including four patients with developmental delay and only one neurological sign. PNEEs were found in 63% of patients at follow-up, with episodic ataxia (EA) in 40% of the sample. Cerebellar ataxia was found in 58% of the patients at follow-up. Four patients had epilepsy in infancy and nine in childhood. Seven infants had febrile convulsions, three of which developed epilepsy later; all three patients had CCA. Cognitive difficulties were demonstrated in 70% of the children. Cerebellar atrophy was found in only one infant but was depicted in 64% of MRIs after age two. CONCLUSIONS: Nearly all of the infants had CCA, PNEE or both. Cognitive difficulties were frequent and appeared to be associated with CCA. Epilepsy was more frequent after age two. Febrile convulsions in association with CCA may indicate risk of epilepsy in later childhood. Brain MRI was normal in infancy. There were no genotype-phenotype correlations found.


Calcium Channels/genetics , Cerebellar Ataxia/genetics , Cognition Disorders/genetics , Dystonia/genetics , Epilepsy/genetics , Child , Female , Humans , Infant , Male , Phenotype , Retrospective Studies
16.
Autophagy ; 17(10): 3096-3108, 2021 10.
Article En | MEDLINE | ID: mdl-33213269

TECPR2 (tectonin beta-propeller repeat containing 2) is a large, multi-domain protein comprised of an amino-terminal WD domain, a middle unstructured region and a carboxy-terminal TEPCR domain comprises of six TECPR repeats followed by a functional LIR motif. Human TECPR2 mutations are linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder. Here we show that basal macroautophagic/autophagic flux is impaired in SPG49 patient fibroblasts in the form of accumulated autophagosomes. Ectopic expression of either full length TECPR2 or the TECPR domain rescued autophagy in patient fibroblasts in a LIR-dependent manner. Moreover, this domain is recruited to the cytosolic leaflet of autophagosomal and lysosomal membranes in a LIR- and VAMP8-dependent manner, respectively. These findings provide evidence for a new role of the TECPR domain in particular, and TECPR2 in general, in lysosomal targeting of autophagosomes via association with Atg8-family proteins on autophagosomes and VAMP8 on lysosomes.Abbreviations: HOPS: homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; SPG49: spastic paraplegia type 49; STX17: syntaxin 17; TECPR2: tectonin beta-propeller repeat containing 2; VAMP8: vesicle associated membrane protein 8.


Autophagosomes , Autophagy , Carrier Proteins , Nerve Tissue Proteins , Autophagosomes/metabolism , Autophagy/genetics , Carrier Proteins/metabolism , Humans , Lysosomes/metabolism , Nerve Tissue Proteins/metabolism
17.
Autophagy ; 17(10): 3082-3095, 2021 10.
Article En | MEDLINE | ID: mdl-33218264

Mutations in the coding sequence of human TECPR2 were recently linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder involving intellectual disability, autonomic-sensory neuropathy, chronic respiratory disease and decreased pain sensitivity. Here, we report the generation of a novel CRISPR-Cas9 tecpr2 knockout (tecpr2-/-) mouse that exhibits behavioral pathologies observed in SPG49 patients. tecpr2-/- mice develop neurodegenerative patterns in an age-dependent manner, manifested predominantly as neuroaxonal dystrophy in the gracile (GrN) and cuneate nuclei (CuN) of the medulla oblongata in the brainstem and dorsal white matter column of the spinal cord. Age-dependent correlation with accumulation of autophagosomes suggests compromised targeting to lysosome. Taken together, our findings establish the tecpr2 knockout mouse as a potential model for SPG49 and ascribe a new role to TECPR2 in macroautophagy/autophagy-related neurodegenerative disorders.


Autophagosomes , Carrier Proteins , Nerve Tissue Proteins , Neuroaxonal Dystrophies , Animals , Autophagosomes/metabolism , Autophagy/genetics , Carrier Proteins/genetics , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics
18.
Genet Med ; 23(2): 363-373, 2021 02.
Article En | MEDLINE | ID: mdl-33144681

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Autism Spectrum Disorder , Brain Diseases , Epilepsy , Autism Spectrum Disorder/genetics , Brain Diseases/genetics , Epilepsy/genetics , Female , Genes, X-Linked/genetics , Humans , Male , Nerve Tissue Proteins , Seizures/genetics
19.
Mol Genet Metab Rep ; 25: 100631, 2020 Dec.
Article En | MEDLINE | ID: mdl-32904102

INTRODUCTION: Peroxisomal D-bifunctional protein (DBP) deficiency is an autosomal recessive disorder historically described as a Zellweger-like syndrome comprising neonatal seizures, retinopathy, hearing loss, dysmorphic features, and other complications. The HSD17B4 gene encodes DBP which is essential for oxidation of peroxisomal substrates. We describe 4 patients - 2 unrelated female girls and 2 monozygotic twin sisters - with DBP deficiency and phenotypic diversity. PATIENT REPORTS: Patient 1 presented neonatally with hypotonia and seizures, and later on developed global developmental delay and regression, sensorineural hearing loss, nystagmus and cortical blindness. The brain MRI demonstrated bilateral peri-sylvian polymicrogyria. Whole exome sequencing revealed 2 mutations in the HSD17B4 gene (c.752G>A, p.(Arg251Gln); c.868 + 1delG).Patient 2 presented with hypotonia, motor delay, and sensorineural hearing loss in infancy, considerable developmental regression during her fourth year, nystagmus, and peripheral neuropathy. Brain MRI demonstrated cerebellar atrophy and abnormal basal ganglia and white matter signal, which appeared after the age of two years. Whole exome sequencing revealed 2 mutations in the HSD17B4 gene (c.14 T>G, p.(Leu5Arg); c.752G>A, p.(Arg251Gln)).Patients 3 and 4, two female monozygotic twins, presented with hypotonia, developmental delay, and macrocephaly from birth, and later on also sensorineural hearing loss, infantile spasms and hypsarrhythmia, and adrenal insufficiency. Brain MRI demonstrated delayed myelination, and an assay of peroxisomal beta oxidation suggested DBP deficiency. Sequencing of the HSD17B4 gene revealed the same 2 mutations as in patient 1. DISCUSSION: We describe 4 patients with variable and diverse clinical picture of DBP deficiency and particularly emphasize the clinical, biochemical, and neuroimaging characteristics. Interestingly, the clinical phenotype varied even between patients with the exact two mutations in the HSD17B4 gene. In addition, in two of the three patients in whom levels of VLCFA including phytanic acid were measured, the levels were within normal limits. This is expanding further the clinical spectrum of this disorder, which should be considered in the differential diagnosis of every patient with hypotonia and developmental delay especially if accompanied by polymicrogyria, seizures, sensorineural hearing loss, or adrenal insufficiency regardless of their VLCFA profile.

20.
Seizure ; 82: 31-38, 2020 Nov.
Article En | MEDLINE | ID: mdl-32979603

PURPOSE: Childhood epilepsy is often associated with cognitive impairments and psychosocial problems. However, it is not clear which factors mediate symptom severity and child's resilience. Emotional and behavioral problems have been associated with various home and school environments, suggesting that information collected may vary depending on both context and informant. In this study we examined the mediating effect of child's cognitive functions on the association between child and epilepsy-related factors and psychosocial problems. Additionally, the differences in psychosocial problems reported by various informants (parents, teachers) in different school settings were explored. METHODS: Participants were 155 children with epilepsy (50 % girls), age range 5-18 years who completed a brief neuropsychological battery. Parents completed the Child Behavior Checklist (CBCL) and teachers completed the corresponding Teacher's Rating Form (TRF), to assess a child's emotional and behavior problems. RESULTS: The cognitive profile of the sample was within average to low-average range. Parents and teachers both reported high levels of emotional and behavioral problems, and teachers reported relatively higher levels of symptoms. A mediation effect of cognition on the association between child and epilepsy-related factors (i.e., number of antiseizure medications and illness duration) and child's emotional and behavioral problems was evident only for teachers' reports. CONCLUSIONS: The results emphasize that the complex interactions between epilepsy, cognition and psychosocial outcomes are perceived differently in diverse contexts by different informants. The incongruities in informants' perceptions regarding the role of cognition in child's psychological state should be acknowledged and incorporated when planning effective educational and rehabilitation interventions for children with epilepsy.


Child Behavior Disorders , Epilepsy , Problem Behavior , Adolescent , Child , Child Behavior Disorders/epidemiology , Child Behavior Disorders/etiology , Child, Preschool , Cognition , Emotions , Epilepsy/complications , Female , Humans , Parents
...