Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16895, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043712

ABSTRACT

SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a life-limiting proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might similarly be due to inhibition of CFTR signaling by SARS-CoV-2 spike protein, and therefore activation of both NFκB and ENaC signaling. We used western blot and electrophysiological techniques, and an organoid model of normal airway epithelia, differentiated on an air-liquid-interface (ALI). We found that CFTR protein expression and CFTR cAMP-activated chloride channel activity were lost when the model epithelium was exposed to SARS-CoV-2 spike proteins. As hypothesized, the absence of CFTR led to activation of both TNFα/NFκB signaling and α and γ ENaC. We had previously shown that the cardiac glycoside drugs digoxin, digitoxin and ouabain blocked interaction of spike protein and ACE2. Consistently, addition of 30 nM concentrations of the cardiac glycoside drugs, prevented loss of both CFTR protein and CFTR channel activity. ACE2 and CFTR were found to co-immunoprecipitate in both basal cells and differentiated epithelia. Thus spike-dependent CFTR loss might involve ACE2 as a bridge between Spike and CFTR. In addition, spike exposure to the epithelia resulted in failure of endosomal recycling to return CFTR to the plasma membrane. Thus, failure of CFTR recovery from endosomal recycling might be a mechanism for spike-dependent loss of CFTR. Finally, we found that authentic SARS-CoV-2 virus infection induced loss of CFTR protein, which was rescued by the cardiac glycoside drugs digitoxin and ouabain. Based on experiments with this organoid model of small airway epithelia, and comparisons with 16HBE14o- and other cell types expressing normal CFTR, we predict that inflammation in the COVID-19 airway may be mediated by inhibition of CFTR signaling by the SARS-CoV-2 spike protein, thus inducing a cystic fibrosis-like clinical phenotype. To our knowledge this is the first time COVID-19 airway inflammation has been experimentally traced in normal subjects to a contribution from SARS-CoV-2 spike-dependent inhibition of CFTR signaling.


Subject(s)
COVID-19 , Cystic Fibrosis Transmembrane Conductance Regulator , Inflammation , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/physiology , Inflammation/metabolism , NF-kappa B/metabolism , Epithelial Sodium Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ouabain/pharmacology
2.
Viruses ; 15(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38140582

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets. The primary endpoints for analysis were clinical signs of disease, recovery of the virus in the upper respiratory tract, and the severity of damage within the respiratory tract. This work demonstrated that ferrets were productively infected with SARS-CoV-2 following either intranasal or small particle aerosol exposure. SARS-CoV-2 infection of ferrets resulted in an asymptomatic disease course following either intranasal or small particle aerosol exposure, with no clinical signs, significant weight loss, or fever. In both aerosol and intranasal ferret models, SARS-CoV-2 replication, viral genomes, and viral antigens were detected within the upper respiratory tract, with little to no viral material detected in the lungs. The ferrets exhibited a specific IgG immune response to the SARS-CoV-2 full spike protein. Mild pathological findings included inflammation, necrosis, and edema within nasal turbinates, which correlated to positive immunohistochemical staining for the SARS-CoV-2 virus. Environmental sampling was performed following intranasal exposure of ferrets, and SARS-CoV-2 genomic material was detected on the feeders and nesting areas from days 2-10 post-exposure. We conclude that both intranasal and small particle aerosol ferret models displayed measurable parameters that could be utilized for future studies, including transmission studies and testing SARS-CoV-2 vaccines and therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Ferrets , COVID-19 Vaccines , Pandemics , Respiratory Aerosols and Droplets , Disease Models, Animal
3.
PLoS One ; 16(1): e0245352, 2021.
Article in English | MEDLINE | ID: mdl-33439885

ABSTRACT

In February and March, 2020, environmental surface swab samples were collected from the handle of the main entry door of a major university building in Florida, as part of a pilot surveillance project screening for influenza. Samples were taken at the end of regular classroom hours, between the dates of February 1-5 and February 19-March 4, 2020. Influenza A(H1N1)pdm09 virus was isolated from the door handle on four of the 19 days sampled. Both SARS-CoV-2 and A(H1N1)pdm09 virus were detected in a sample collected on February 21, 2020. Based on sequence analysis, the Florida SARS-CoV-2 strain (designated UF-11) was identical to strains being identified in Washington state during the same time period, while the earliest similar sequences were sampled in China/Hubei between Dec 30th 2019 and Jan 5th 2020. The first human case of COVID-19 was not officially reported in Florida until March 1st. In an analysis of sequences from COVID-19 patients in this region of Florida, there was only limited evidence of subsequent dissemination of the UF-11 strain. Identical or highly similar strains, possibly related through a common transmission chain, were detected with increasing frequency in Washington state between end of February and beginning of March. Our data provide further documentation of the rapid early spread of SARS-CoV-2 and underscore the likelihood that closely related strains were cryptically circulating in multiple U.S. communities before the first "official" cases were recognized.


Subject(s)
Environmental Monitoring , Influenza A Virus, H1N1 Subtype/isolation & purification , SARS-CoV-2/isolation & purification , Universities/statistics & numerical data , Florida , Humans , Phylogeny , SARS-CoV-2/classification , Surface Properties , Time Factors
4.
Biotechniques ; 63(2): 81-84, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28803544

ABSTRACT

Nanomaterials (NMs) of various types, including carbon nanotubes (CNTs), can interfere with standard quantitative real-time PCR (qRT-PCR) assays, resulting in inaccurate gene expression measurements; however, the precise step in the qRT-PCR pipeline where this interference occurs has not been well described. Here, we investigated where in the process surface-oxidized multi-walled CNTs (oxMWNTs) inhibited qRT-PCR measurement of the expression of the housekeeping gene GAPDH and explored several strategies to minimize such inhibition. We determined that the interference occurred during the reverse transcription (RT) step and found that doubling reaction reagents or adding BSA successfully mitigated the inhibition. We observed assay interference in the presence of CNTs that were surface-oxidized, but pristine CNTs did not cause the same level of interference. These results highlight the importance of monitoring qRT-PCR assays for interference by CNTs that differ by surface chemistry, as these NMs are commonly used in gene expression assays at concentrations that we have shown to be inhibitory.


Subject(s)
Gene Expression , Nanotubes, Carbon/chemistry , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Cattle , DNA, Complementary/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Humans , Oxidation-Reduction , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL